본문 바로가기

Report

All 707 Page 22/71

검색
  • 497

    2006.07.06

    * I-NERI는 미국 내에서 핵 과학및 기술을 발전시킬 수 있는 연구를 수행함으로서 국가 에너지 정책(National Energy Policy)을 지원하고 있음. * I-NERI는 참여 국가들과 협력하여 혁신적인 과학 및 공학 연구와 개발을 후원해 옴. *I-NERI 우산 아래 수행되었던 연구들은 원자력 에너지의 미래와 그것의 전 세계의 배치에 영향을 줄 수 있는 주요 이슈들을 다루고 있음. *I-NERI 연구는 비용 성과, 핵 확산 반대의 증가, 안전 증대, 미래 원자력 에너지 시스템의 폐기물 관리에 대한 문제를 해결하는 방향으로 이루어지고 있음. 관련 정보는 http://www.nuclear.gov/programoffices.html 에서 얻을 수 있음. 본 ‘I-NERI 2005 연간 보고서’는 프로그램 조직, 협동 연구 과제의 진행 정도, 프로그램의 미래 계획에 대해 관심을 가진 단체를 위한 것이다. 본 보고서에는 2002년 회계연도부터 I-NERI 활동을 보고한 것임. 보고서의 단원 2에서는 I-NERI 프로그램이 어떻게 만들어지게 되었는지에 대한 정보와, 현재 I-NERI 협력에 동의한 참가국들에 대해 정보 제시함. 단원 3은 프로그램의 목표 및 목적에 대한 개략, 세 개로 구성된 일의 범위를 요약, I-NERI 조직에 대한 서술, 프로그램 시작 이후 연구 자금에 대한 총괄을 제시함. 단원4에는 프로그램을 통해 얻은 결과들을 요약하였으며, 매년 주요 활동들, 양국간 동의 아래 수행된 연구 분야들, 참가국의 조직 프로필을 하이라이트 하였음. 이 단원에서는 2005년 회계연도에 끝난 10개의 과제들 소개함. 현재 진행되고 있는 I-NERI 협력 과제에 대한 자세한 연구개발 작업 범위는 단원5에서 11에 걸쳐 소개하였음. 협력 국가로는 브라질, 캐나다, 유럽연합, 프랑스, 일본, 한국, 경제협력개발기구들이 있음. 각 단원마다 과제 목록과 각 프로그램이 2005년 회계연도에 이룬 것들을 요약하였음. 목차 1. 서론 2. 배경 3. I-NERI 프로그램에 대해 4. I-NERI 프로그램 수행결과 5. 미국/브라질 협력 6. 미국/캐나다 협력 7. 미국/유럽 연합 협력 8. 미국/프랑스 협력 9. 미국/일본 협력 10. 미국/한국 협력 11. 미국/경제 협력 개발기구(OECD) 협력 12. I-NERI 과제들 목록
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword : 원자력에너지, I-NERI
  • 496

    2018.07.29

    SNC-Lavalin사의 자회사인 Candu Energy사는 SRC(Saskatchewan Research Council)의 연구로인 Slowpoke-2 폐로를 위해 폐로용역을 제공하게 되었다고 2018년 7월 23일 밝혔다.

    Slowpoke-2 원자로는 캐내다 Saskatchewan주 Saskatoon에 있는 SRC의 환경분석연구소(Environmental Analytical Laboratories)에서 37년 간 운영되어 왔다. 이 저출력 원자로는 우라늄 및 다른 자원의 농축도를 파악하기 위한 중성자 방사화 분석을 위한 분석 도구로 1981년부터 사용되었다. 올 해 1월 수명기간 동안 총 20,000 시간의 운영시간을 돌파한 바 있다.

    이 원자로는 현재 2023년 6월까지 운영할 수 있도록 허가를 받아 놓은 상태지만 SRC는 작년 12월 이미 캐내다 원자력규제기관인 CNSC(Canadian Nuclear Safety Commission)에 폐로신청을 한 것으로 알려졌다. 폐로에는 2~3년이 소요될 것으로 예쌍된다.

    SNC-Lavalin 측은 폐로는 원자로 수명주기의 끝을 말하며 안전을 최우선으로 자사의 최신 기술과 현대적 도구, 교육훈련을 제공할 것이라고 밝혔다. 최근 Dalhousie University과 University of Alberta를 성공적으로 폐로할 경험이 있다고 덧붙이면서 친환경적인 방법으로 Slowpoke-2 원자로를 안전하게 폐로할 수 있다고 강조했다.

    첫 Slowpoke (Safe Low-Power Kritical Experiment) 원자로는 1960년 대에 AECL(Atomic Energy of Canada Ltd)이 연구 및 교육기관애 중성자원을 공급하기 위해 개발했다. 알루미늄 저장용기로 밀봉된 원자로 노심은 냉각 및 차폐기능을 제공하는 수조 바닥에 위치하고 있다. 열출력을 20 MWt까지 낼 수 있는 이 원자로는 높은 수준의 피동안전성을 갖고 있다.

    SNC-Lavalin사는 2016년 University of Alberta에 있는 Slowpoke-2 연구로 폐로 계약을 따낸 바 있다. 이 원자로는 2017년 7월부터 운영을 중단했으며 폐로는 2018년 6월 공식적으로 종료되었다. Slowpoke-2형 연구로는 현재도 Quebec주 Montreal의 École Polytechnique와 Ontario주 Kingston의 Royal Military College (RMC) of Canada에서 운영되고 있다. RMC는 2017년 연구로에 대한 연료 재장전 승인을 받아 향후 30년 간 더 운영할 수 있게 되었다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 저출력 원자로,중성자방사화 분석,폐로 2. low-power reactor,neutron activation analysis,decommission
  • 495

    2018.11.06

    미 에너지부(DOE, Department of Energy)는 아이다호 국립연구소 INL(Idaho National Laboratory)에 신형 원자로 기술 개발 지원을 위해 핵연료 제조공장 건설에 대한 환경영향평가 초안에 대한 공청기간을 갖고 있으며 2018년 11월 30일 마감 예정이다.

    고순도 저농축 우라늄(HALEU, high-assay low enriched uranium) 핵연료는1964년부 1994년까지 운영되었고 현재는 폐로된 EBR-II(Experimental Breeder Reactor-II) 사용후핵연료의 우라늄 농축도를 낮춰 만들어질 예정이다.

    EBR-II에서 사용된 고농축우라늄 연료는 재정련하여 INL 내 MFC(Materials and Fuels Complex)의 전기정련기를 써서 농축도가 낮아져 있는 상태다. 핵분열성 우라늄-235의 농축도가 5~20% 인 HALEU는 현재 INL에 저장되어 있다.

    현재 원자력발전소에서 사용되는 저농축 우라늄(LEU, low-enriched uranium) 핵연료는 핵분열성인 우라늄-235의 농축도가 통상 5% 미만이지만 현재 개발되고 있는 신형원자로 대부분은 HALEU 핵연료가 필요하다. 현재 HALEU를 즉시 만들 수 있어낼 수 있는 상용시설이 미국 내에는 전무한 실정이다.

    DOE는 MCF 및 Idaho Nuclear Technology and Engineering Center의 용량을 확장하여 금속성 HALEU를 연구개발 목적으로 10톤의 핵연료로 변환한다는 계획을 제안했다. 이 핵연료는 신형원자로 개발사를 비롯한 민간 및 정부기관의 중기 연구개발 및 입증에 활용될 예정이다. 올 해 초 미 상원은 미 해군이 사용한 고농축우라늄 연료를 HALEU로 만드는 입증프로그램에 미화 1,500만 불을 승인한 바 있다.

    EBR-II는 열출력 62.5 MWt급 입증로로 통상 전기출력 19 MWe로 운전되었으며 나트륨냉각 증식로 입증에 사용되었고 동시에 연구시설 내에 열과 수명기간 동안 2 TWh가 넘는 전기를 공급하기도 했다. 대형 고속로를 위한 재료 및 핵연료 시험에도 활용되었고 핵연료 리사이클링과 피동형 안전특성 입증에 활용되어 미국 통합고속로(Integral Fast Reactor)이 기초를 만들어 주었다.  Advanced Reactor Concepts사의 ARC-100 고속로와 GE-Hitachi사의 PRISM 나트륨냉각 고속로 등 몇몇 소형모듈형원자로(SMR)가 EBR-II에 기술적 뿌리를 두고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 고순도 저농축 우라늄,아이다호 국립연구소,핵연료 리사이클링 2. HALEU(high-assay low enriched uranium),INL(Idaho National Laboratory),fuel recycling
  • 494

    2006.09.22

    일본 정부는 국제적인 원자력의 평화적 이용을 추진하기 위해, 핵무기 개발을 폐기한 국가에 대해 다국간 협정을 통해 원자력 발전용 핵연료의 공급을 보증하는 새로운 구상을 정리하여, 국제원자력기관(International Atomic Energy Agency, IAEA)에 제출한다는 방침을 굳혔다. 이러한 내용은 9월 18일부터 개시되는 IAEA총회에서 일본의 원자력위원장에 의해 발표될 것이다. 일본의 제안은 “핵연료 공급등록 시스템”으로 불리는 구상으로, 6월의 IAEA 이사회에서 미국, 유럽, 러시아의 6개국이 표명한 “핵연료 공급 보증구상”의 대안으로서 정리한 것이다. 세계의 원자력 발전용 우라늄연료 공급을 독점하는 6개국이 핵물질 관리를 지배하는 구상에 대해 개발도상국이 반발하고 있는 사실을 고려하여, 일본의 이번 구상안은 개발도상국을 포함한 광범위한 국가가 공급측에 참가할 수 있게 한 것이 특징이다. IAEA가 조정의 역할을 하며, 선진국, 개발도상국을 불문하고 각 나라가 가지는 핵연료 공급에 관련된 능력과 기술을 등록하는 제도를 정비한다. 우라늄 농축과 플루토늄 추출이라고 하는 재처리를 포기한 국가에 연료를 공급할 때에는 IAEA가 각 국가에 업무를 분할한다. 이 시스템에 대한 등록은 우라늄 채굴, 농축, 연료가공 등의 분야별로 “국내용 생산 능력 있음”, “상업규모로 수출실적 있음”, ”수출가능한 비축 있음” 으로 구분된다. 세계적으로는 앞으로 온난화 대책 등에 대해 원자력 발전의 확대가 예상되고 있으며, 핵연료 시장은 매력적인 사업기회가 될 것으로 기대되고 있다. 이미 농축기술을 보유하고, 앞으로 해외시장을 개척하고자 하는 일본에 대해서는 6개국의 구상은 수용하기 어려워 이번 대안을 정리할 필요성이 있던 것이었다. 일본은 지금까지 핵확산방지조약(Nuclear nonproliferation treaty, NPT) 체제에 적극적으로 협력함으로써, 핵무기를 보유하지 않는 국가 가운데 유일하게 상업적 규모의 우라늄 농축과 재처리를 인정 받아 왔다. 그러나 “특권적 입장”에 대한 국제적인 질투도 받아 왔던 것도 사실이다. 이번 일본의 제안에는 일본이 새로운 틀 구축에 공헌하는 자세를 표명함으로써, 국제적인 발언력을 강화한다는 하는 노림수도 있다. * yesKISTI 참조
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword : 일본, 세계 핵관리 체제에 새로운 구상 제안
  • 493

    2018.07.24

    영국 Moltex Energy사는 캐내다의 New Brunswick Energy Solutions사 및 NB Power사와 협약을 맺고 Point Lepreau 원전 부지에 SSR-W(Stable Salt Reactor - Wasteburner) 입증로를 건설할 계획이다. Moltex사는 캐나다에 소형모듈형원자로(SMR, small modular reactor) 기술을 연구개발하는 원자력연구클러스터의 2번째 파트너가 되었다.

    이 협약에 따라 미화 380만 불의 재정지원이 Moltex 측에 지원되며 Saint John 에 북미본사를 개설하며 이 곳에 개발팀을 배치하게 된다. 또한 2030년 이전에 최초의 SSR-W 입증로를 Point Lepreau 원전부지에 건설하게 된다.

    New Brunswick 주정부는 2018년 6월 26일 New Brunswick Energy Solutions사가 원자력연구클러스터 프로젝트를 추진하는데 미화 750만 불을 지원하겠다고 밝힌 바 있다. 이러한 움직임은 New Brunswick주를 SMR 기술 연국개발의 중심지로 만들려고 하는 목적을 갖고 있다. 지난 주 ARC사(Advanced Reactor Concepts)가 이 연구클러스터의 첫번째 파트너가 되었다. ARC사는 금속우라늄합금 노심을 갖는 100 MWe급 통합나트륨냉각고속로를 개발 중이다.

    New Brunswick Energy Solutions사는 2017년 5월 New Brunswick 주정부와 Point Lepreau 원전을 운영하는 NB Power사가 에너지 수출을 목적으로 설립한 조인트벤쳐다.

    Moltex Energy사의 SSR는 2차측 용융염 조에 소형 임페러를 제외하고는 펌프가 없고 증기발생기까지 열을 전달하기 위해 정적 수직연료관에서의 대류방식에 의존하는 개념적 원자로 설계다. 연료집합체는 증기발생기까지 대류방식으로 열을 전달하기 위해 냉각수 역할을 하는 용융염이 반절 채워진 탱크 중심에 배치된다. 노심온도는 500~600°C이며 대기압을 유지한다. Moltex사는 공급이 단속적인 신재생에너지를 원자로가 보완할 수 있도록 하기 위해 GridReserve 용융염 열저장 개념 개발에도 박차를 가하고 있다.

    Moltex사는 영국이 시행한 SMR 설계 공모에 고속로 및 열중성자로를 모두 제안한 바 있다. 캐나다 원전규제기관인 CNSC(Canadian Nuclear Safety Commission)에는 자사가 개발중인 원자로에 대한 원전공급사설계검증(Vendor Design Review) 1단계도 신청한 바 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 원자력연구클러스터,통합나트륨냉각고속로,저탄소환경 2. nuclear research cluster,integrated sodium-cooled fast reactor,lower-carbon environment
  • 492

    2018.07.05

    현재 중국에 건설 중인 AP1000 원자로를 통한 전력생산이 2018년 6월 21일 Sanmen 1호기 최초임계와 Haiyang 1호기 최초 핵연료장전을 통해 한 발 더 가까워졌다. 이 두 원자로는 올 연말까지 시운전이 계획되어 있으며 AP1000형 원전으로는 세계적으로 최초의 가동원전이 될 전망이다.

    중국 Zhejiang성 Sanmen 원자력발전소 1호기가 2018년 6월 21일 오전 2시 9분 최초 임계에 도달했다고 SNPTC사(State Nuclear Power Technology Corporation)이 발표했다. Westinghouse사 측은 이로써 AP1000 최초원전의 상업운전 이전 마지막 마일스톤을 달성했다고 밝혔다.

    Sanmen 1호기 시운전 공정상 다음 단계는 해당 원전에 생산한 전력을 전력망에  송출하기 시작하는 계통병입(synchronisation)이다. 이후 원자로 및 발전기 출력을 서서히 올려 각종 시험을 안전하고 성공적으로 끝내 100% 전출력에 도달하는 출력상승시험을 수행하게 된다.

    Westinghouse 측은 Sanmen 1호기가 운영을 시작하게 된다면 세계 최초로 가동되는 AP1000 원전이 될 것이며 혁신적인 피동형 안전계통, 다층방호 및 첨단제어시스템 등을 갖추고 있어 신뢰도와 안전성에서 가장 높은 수준을 달성하게 된다고 밝혔다.

    2007년 9월 Westinghouse사와 Shaw Group은 중국 내 Sanmen 및 Haiyang 부지에 각 2기씩, 총4기의 AP1000에 대한 건설승인을 받은 바 있다. Sanmen 1호기 건설은 2009년 4월, 2호기는 2009년 12월에 시작되었으며 Haiyang 1,2호기는 각각 2009년 9월 및 2010년 6월 건설에 착수한 바 있다.

    한편, Westinghouse사는 Haiyang 1호기에 대한 핵연료 157 다발의 원자로심 내 장전이 2018년 6월 21일 오후 7시 36분 시작되었다고 밝혔다. Haiyang 1호기는 최근 연료장전에 필요한 사전시험을 완료했으며 규제기관의 심사도 모두 만족한 바 있다. Haiyang 1호기는 올 해 말, 2호기는 내년에 운영을 시작할 것으로 전망된다.

    미국에도 역시 4기의 AP1000 원자로가 Vogtle 및 Summer 부지에 각 2기씩 건설되고 있다. 하지만 Summer 부지에 건설 중인 2기는 작년 8월부터 건설이 중단된 상태다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 최초임계,계통병입,출력상승시험,피동안전계통 2. first criticality,synchronisation,power ascension testing,passive safety system
  • 491

    2019.03.11

    최종 커버를 설치함으로써 미국 내 유일한 핵연료 재처리 상용시설이었던 에너지부(DOE, Department of Energy) 환경관리국(Office of Environmental Management) 산하의 WVDP(West Valley Demonstration Project)에 있던 유리화 공장 해체작업이 완료되었다.

    면적이 994 평방미터에 달하는 3층짜리 구조물 해체작업은 작년 9월 완료된 바 있다. 여러 단계로 구성된 해체작업은 덜 오염된 외벽 제거, 강화콘크리트로 된 작업실 및 장비 해체, 기중기 유지보수실 및 이송터널 해체 작업 등으로 구성되어 있다. 

    195톤 짜리 용융로 및 각각 중량이 150톤에 달하는 2기의 탱크를 포함한 약 283,000리터에 달하는 물질이 시설 해체 시작 전에 건물로부터 제거되었다. 남아있는 콘크리트 평판 위에 덮은 덮개는 지표면 아래에 남아있는 구조물에 물이 침투하는 것을 막는 기능을 할 것이다.

    미국 New York 주 Ashford 인근 West Valley 부지에 있는 Western New York Nuclear Service Center는 1966년부터 1972년까지 운영되었다. 이 시설은 미국 내 유일한 핵연료 재처리 상용시설이었다. WVDP는 1980년 의회가 제정한 법령에 따라 설립되었다. 이 법령에 따라 DOE는 재처리 공정에서 발생한 고준위 방사성폐기물을 고화 처리해야 하는 책임을 지게 되었다.

    또한 고화처리에서 발생한 폐기물을 처분하고 해당 시설도 해체해야 했다. 해당 부지와 시설은 New York 주 에너지연구개발청(Energy Research and Development Authority) 소유였다.

    유리화 시설이 방사성폐기물을 고화처리하기 위해 1980년대에 건설되었다. 해당 폐기물에 대한 전처리는 1988년 개시되었고 유리화 작업은 1996년부터 2002년까지 지속되어 2,400백만 큐리(Curie)의 방사능이 600톤의 유리로 고화처리되어 275개의 스테인리스 철통에 담겼다.

    주계약자는 CHBWV사로 CH2M HILL Constructors Inc., Babcock & Wilcox Technical Services Group 및 Environmental Chemical Corporation으로 구성된 회사다. 전체 WVDP 해체, 제염 총 사업비는 미화 18.7~20.5 억불에 달하며 2040~2045년 경 완료될 것으로 전망된다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 유리화,핵연료 재처리,용융로 2. vitrification,nuclear fuel reprocessing,melter
  • 490

    2007.11.27

    원자력선진국의 전문가들이 모여 미래 원자력시스템 개발방향 및 계획 수립을 위해 머리를 맞대고 고민하는 자리가 마련된다.

    한국을 비롯하여 미국, 프랑스, 일본 등 원자력선진국 13개국이 참여하고 있는 「제4세대 원자력시스템 국제포럼」(GIF: Generation Ⅳ International Forum)의 최상위 기구인 정책그룹회의가 오는 11월 29일부터 30일까지 경주 힐튼호텔에서 개최된다.

    이번 회의에는 한국 GIF 정책그룹 대표인 김영식 과학기술부 원자력 국장과 정연호 한국원자력연구원 부원장을 비롯하여 GIF 회원국 정책그룹 대표단 50여명이 참석하며, 제4세대 원자력시스템(Gen-Ⅳ)의 국제 공동연구를 위한 정책적 협의와 기술적 현안에 대한 논의가 이루어질 예정이다.

    GIF는 2000년 1월 한국을 비롯한 원자력활동이 활발한 주요 9개국이 Gen-Ⅳ 개발에 대한 공동성명을 발표하고, 2001년 7월 Gen-Ⅳ 연구개발을 위한 국제협력체로서의 역할과 운영 규정을 담은 헌장(Charter)에 서명함으로써 공식 발족되었다. 이후 스위스, EU, 중국, 러시아가 신규로 가입하여 현재는 13개국이 회원국으로 활동하고 있다. 

    Gen-Ⅳ라고 불리는 제4세대 원자력시스템(Generation Ⅳ Nuclear Energy System)은 미래 에너지 수요 충족과 국민 수용성 확보를 위해 개발 중인 차세대 원자력시스템이며, 2020~2030년경 실증로 및 상용로 건설을 목표로 추진 중이다. 제4세대 원자력시스템은 경제성 및 안전성 향상은 물론이고, 핵물질의 전용을 사전에 방지하여 핵비확산성을 확보하고 핵연료의 활용도를 높여 지속적인 에너지 공급을 가능케 하며, 방사성폐기물 발생량을 줄여 환경부담을 최소화 시킨다는 특징을 갖고 있다.

    한국은 GIF 선정 6대 원자력시스템 중 소듐냉각 고속로(SFR), 초고온가스로(VHTR) 및 초임계압 수냉각 원자로(SCWR) 개발에 참여하고 있으며 제4세대 원자력시스템이 개발되면 우리나라의 에너지와 환경문제를 해결 할 수 있을 것으로 기대된다. 또한 이번 회의의 한국 개최를 통해 한국 원자력분야의 국가위상을 강화시키고 제4세대 원자력시스템 개발을 위해 한발 더 나아가는 계기를 마련하게 되었다.

     


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 489

    2007.11.03

    러시아가 다른 에너지 보다 원자력 산업 분야 개발로 선회하기 위하여 국가적인 노력과 현황을 정리하였다.

    화석연료의 지속적인 감소에 맞추어 원자력 산업 개발외에는 대안이 없다. 2007년 11월 2일 러시아 총리 Sergei Ivanov 는 산업, 수송, 기술과 관련된 정부 회의에서 에너지 부족에 직면하여 원자력(핵에너지,nuclear power) 생산을 강력하게 추진할 필요가  있다고 언급하였다. 동시에 '러시아 정부에선 2007년~2010년의 원자력 산업개발에 따른 연방 정부의 프로그램에 동의한다'고 하였다.   

    이 프로그램에 따르면 원자력 에너지는 2015년 러시아 에너지 생산의 18%를 차지하고 2030년에 30%에 이르도록 목표로 정하였다. 

    한편, 러시아는 천연자원부를 중심으로 충분한 원자력 에너지를 지속하기 위한 원료인 우라늄을 확보하기 위하여 다각도록 다른 국가와 협력 및 개발에 대한 정책을 추진하였다.   러시아의 원자력 발전소 건설은 러시아의 원자력 에너지 체계를 위한 최우선 순위 중 하나이며, 현재 러시아 내부에 5 개의 원자력 설비와 국외에 7개를 건설 중이라고 러시아 전문가들은 설명하고 있다.

    러시아에서 이런 원자력 산업을 위하여 필요한 대량의 우라늄은 사실 소련 붕괴로 인하여 우라윰 보유 전략에 차질을 빚게 되었다. 그러나 러시아에선 우라늄 확보를 위한 모든 가능성을 검토하여 보충하고자 한다. 이를 위하여 러시아 국내 뿐 아니라 국외에서도 이 우라늄 확보 정책 및 실행을 할 필요가 있다.

    세르게이 이바노프이(Sergei Ivanov)는 2007년 10월에 가졌던 원자력 에너지 분야의 개발 예산으로 2007년 할당된 180억 루블 (미국화폐, 7억2천2백만 $)이 있다. 그리고 2008년에 510 억 루블 (약, 20 억 $), 2009년에 900억 루블 (약, 36 억 $)을 지출하려고 한다.

    2006년 보고서로 OECD와 원자력 에너지기구 (NEA)과 국제 원자력기구(IAEA)에서 공동으로 발간한 '우라늄 2005 년' 에서 러시아 국가는우라늄 원광석을 가장 많이 보유하는 국가 중 9 번째이며 보유량으로 172,000 톤이며 이는 세계 공급분의 3 % 이상을 차지한다.


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 488

    2008.05.05

    X-레이 없는 세상을 상상할 수 있을까?X-레이는 병원에서 골절 여부를 알아내는 촬영뿐만 아니라 공업용으로 재료나 제품의 비파괴검사를 할 때도 쓰인다. 고미술품이나 그림의 진품 여부를 감정하기도 하고, X-레이의 강한 에너지를 이용해 인체 내부에 있는 염증이나 종양 등을 치료하기도 한다. 특히 공항 보안 검색대에서 X-레이는 없어서는 안 될 존재인데 그 이유는 마약이나 총기류 등 불법 소지물을 감시하는데 쉽고 빠르게 조사할 수 있기 때문이다. 이처럼 X-레이는 현재 우리네 삶속에서 빼 놓을 수 없는 기술이 되었다.1895년 독일의 물리학자 뢴트겐이 처음 발견한 이래, X-레이는 우리 생활 속으로 깊숙이 들어왔다. 보통 진공 방전관 내에서 높은 전압으로 가속한 전자를 타깃(target: 표적)이라는 금속판에 충돌시키면 0.01nm~10nm 사이의 전자기파(X-레이)가 발생한다. 이렇게 발생된 X-레이는 투과력이 높아서 다양한 용도로 활용되지만 과다하게 사용할 경우 위험할 수 있다.X-레이의 주파수는 100만조(10의 18승) Hz 안팎. 에너지가 워낙 커 X-레이 피폭량이 어느 한계를 넘으면 생체 세포에 변화가 생겨 피부암을 초래하거나 유전적 기형을 유발하기도 한다. 이런 특성은 푸른곰팡이의 품질개량에 이용되는 장점도 있지만, 사람에게는 치명적인 위험이 된다는 단점도 있다. 공항 검색대에서 승객의 소지품에 X-레이을 쫴는 반면, 승객에게는 X-레이를 직접 조사하지 않는 이유도 이 때문이다. 그렇다면 보다 안전하면서도 X-레이를 대체할만한 것은 없을까?X-레이의 대안으로 강력하게 떠오르는 것이 테라헤르츠 카메라(Tera Hertz camera)다.줄여서 T-레이(T-ray)라고도 부르기도 하는데, 일반적으로 T-레이는 적외선과 전자기 스펙트럼의 극초단파 사이에 있는 0.5-4.0 테라헤르츠(THz: 10의 12 승 Hz)의 전자기파를 사용한다. 여기서 ‘테라’는 1조를 뜻하는 그리스어이고, 테라헤르츠파의 주파수는 1,000억∼10조 헤르츠(Hz)다. 즉 1초에 적어도 1,000억 번 이상 진동한다는 의미다. T-레이는 종이, 나무, 플라스틱, 심지어 시멘트까지 웬만한 물체들은 대부분 투과하지만 물과 금속은 통과하지 못하는 독특한 성질이 있다. 무엇보다 T-레이 에너지는 X-레이의 100만분의 1정도에 불과해서 옷 속에 숨긴 흉기나 폭발물을 찾기 위해 승객에게 쪼여도 부작용이 거의 없다. 최근 영국 런던을 위시한 주요 도시의 공항 등에서 불법 소지물을 감시하는 T-레이 카메라가 등장한 것도 안전성이 높기 때문이다. 대부분의 물질이 테라헤르츠파의 주파수 내에서 특정 영역을 흡수하기 때문에 T-레이는 X-레이로 판별해 내기 어려운 가루 형태의 폭발물이나 마약, 플라스틱 흉기 등도 분별해 낸다. 뿐만 아니라 조직이 치밀하지 않은 암세포에는 쉽게 침투하고 정상 조직에는 잘 침투하지 못하는 T-레이의 특성을 이용해 피부암이나 유방암처럼 주로 피부 바로 아래에 생기는 암을 손쉽게 진단할 수 있다. T-레이 연구의 권위자인 이탈리아 로마 토르 베르가타 대학(Tor Vergata Universita)의 알도 디 카를로(Aldo D Carlo) 교수는 T-레이가 X-레이 영역의 상당부분을 대체할 것이라고 예상했다. 실제로 우주연구와 생물학, 현미경 등에도 T-레이 활용이 진행되고 있다. 선명한 영상을 얻기 위해서는 광원을 안정적으로 확보해야 하는데, X-레이에 비하면 기술의 수준이 걸음마 단계에 있다. 물론 지금까지 자유전자레이저(Free Electron Laser) 또는 방사광가속기(synchrotron radiation)의 전자빔을 이용하는 기술을 비롯해 극초단 레이저나 비선형물질을 이용하는 기술 등이 개발된 것은 사실이다. 그렇지만 이 기술들은 실험단계에 머문 상태라서 상용화하기에는 아직 부족한 점이 많다.현재 T-레이의 잠재력에 주목한 미국, EU 그리고 일본 등의 과학자들은 T-레이의 공급원을 확대하기 위한 ‘진공 테라헤르츠 증폭기(VTA)’ 개발에 총력을 기울이고 있다. 여기에는 일본 쓰쿠바 대학(the University of Tsukuba)에서 만든 고온 초전도체 기술, 마이크로머쉬닝 및 나노테크놀러지와 같은 신기술들이 활용되고 있다. 일리노이주 아르곤 국립 연구소(Argonne National Laboratory)에서는 배터리로 작동하는 소형 장치를 통해 T-레이를 만드는 데 성공했고, 영국에서는 이미 소형 T-레이 카메라가 시판되고 있다.인체에 해가 없는 T-레이 기술이 진보되는 만큼 X-레이가 없는 세상이 생각보다 일찍 올지도 모를 일이다. (글 : 유상연 과학칼럼니스트)
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :