본문 바로가기

Report

All 708 Page 23/71

검색
  • 488

    2014.04.02

    <P>2014년 3월 19일, Wiley는 Wiley에서 발행하는 모든 오픈액세스 저널에 Altmetric을 도입한다고 발표했다. </P> <P> </P> <P><A href="http://exchanges.wiley.com/blog/2014/03/19/wiley-introduces-altmetrics-to-its-open-access-journals/" target=_self><IMG border=0 src="https://www.koar.kr/upload2/i_report_img/1396317019604.jpg"></A></P> <P>이미지 출처 : Wiley introduces Altmetrics to its Open Access journals</P> <P>                    <A href="http://exchanges.wiley.com/blog/2014/03/19/wiley-introduces-altmetrics-to-its-open-access-journals/">http://exchanges.wiley.com/blog/2014/03/19/wiley-introduces-altmetrics-to-its-open-access-journals/</A></P> <P>  </P> <P>Wiley는 2013년 4월부터 6개월간 6개 저널을 대상으로 Altmetrics를 시범적으로 도입해왔으며, 이 시범 도입기간 동안 </P> <P>6개 저널의 2,183개 논문이 높은 수준의 주목을 받고, 해당 논문의 약 40%가 10 이상의 Altmetric 점수를 획득하는 등의 성과가 있었다. </P> <P> </P> <P>또한 Altmetric 시범 도입 기간 동안 수행한 이용자 조사에서 Altmetric 점수 표시를 긍정적이라고 답한 응답이 많아 이번에 본격적으로 Wiley의 모든 오픈액세스 저널에 Altmetric 도입을 결정한 것이다. </P> <P>  </P> <P>Altmetric 도입 대상 저널은 Wiley가 발행하는 35개 오픈액세스 저널과 가까운 시일내 창간할 예정인 1개 저널로, 다음과 같다. </P> <P> </P> <P>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1474-9726" target=_self>Aging Cell<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2328-9503" target=_self>Annals of Clinical and Translational Neurology  <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-2680" target=_self>Asia & the Pacific Policy Studies<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2157-9032" target=_self>Brain and Behavior<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7634" target=_self>Cancer Medicine<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1349-7006" target=_self>Cancer Science<BR></A>- Cell and Molecular Biology Reports (forthcoming)<BR>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2041-5346" target=_self>Cell Biology International Reports<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2191-1363" target=_self>ChemistryOpen<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0904" target=_self>Clinical Case Reports<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2328-4277" target=_self>Earth’s Future<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-7758" target=_self>Ecology and Evolution<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1757-4684" target=_self>EMBO Molecular Medicine<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-0505" target=_self>Energy Science & Engineering<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1752-4571" target=_self>Evolutionary Applications<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2048-3694" target=_self>Food and Energy Security<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2048-7177" target=_self>Food Science & Nutrition<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-4527" target=_self>Immunity, Inflammation and Disease<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1750-2659" target=_self>Influenza and Other Respiratory Viruses<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466" target=_self>Journal of Advances in Modeling Earth Systems<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1582-4934" target=_self>Journal of Cellular and Molecular Medicine<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)2040-1124" target=_self>Journal of Diabetes Investigation <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2051-3909" target=_self>Journal of Medical Radiation Sciences <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1520-6017" target=_self>Journal of Pharmaceutical Sciences<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1751-7915" target=_self>Microbial Biotechnology<BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2045-8827" target=_self>MicrobiologyOpen <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2324-9269" target=_self>Molecular Genetics & Genomic Medicine <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1744-4292" target=_self>Molecular Systems Biology  <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2052-2975" target=_self>New Microbes and New Infections  <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2054-1058" target=_self>Nursing Open</A> <BR>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2052-1707" target=_self>Pharmacology Research & Perspectives <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2051-817X" target=_self>Physiological Reports <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2052-4412" target=_self>Regeneration <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2051-3380" target=_self>Respirology Case Reports <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2050-1161" target=_self>Sexual Medicine <BR></A>- <A href="http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2053-1095" target=_self>Veterinary Medicine and Science </A></P> <P> </P> <P> </P> <P>Altmetric</P><A href="http://www.altmetric.com/">http://www.altmetric.com/</A> <P> </P>
    • 저자 : KISTI 정보서비스 동향지식 포털
    • Keyword : 1. 와일리;알트매트릭스;오픈액세스 저널 2. Wiley;Altmetrics;Open access Journal
  • 487

    2008.12.04

                                   청정 에너지 생산을 위한 태양 에너지 잡기
     
    유럽연합과 회원국의 대표 과학자들은 수백만 유로의 비용이 드는, 환경에 청정한 전기, 수소, 다른 연료의 생산을 위한 사업에 매진 할 것을 촉구했다. 최근 유럽과학재단(ESF) 주최로 로젠버그에서 열린 회의에서 세계 에너지 필요에 대한 유일한 지속 가능한 해결책이며, 궁극적으로는 가장 유망하면서 방법으로 완전한 규모의 상업적인 태양 에너지 연료 전환 방법이 확인되었다. 이 보고서는 이 회의 결과를 요약한 것이다.
     
    근본문제는 세계 총 연간 에너지 소비가 2050년 까지 현재의 14TW보다 두 배 늘어날 것이라는 점이다. 그 사이 화석연료는 고갈되고, 이산화탄소 배출은 겉잡을 수 없이 늘어나며, 지구 온난화로 세상은 재앙의 위협에 직면한다. 태양에너지 외에, 풍력과 원자력을 이용할 수 있으나 그것으로 에너지 수요 증가를 충당할 수도, 화석 연료를 완전히 대체할 수도, 필요한 전기 생산을 다 할 수도 없다. 또 한가지 문제는 이들은 저장 연료를 생산할 수 없다는 것이다. 전기 저장에서 우연한 큰 발견이 없이는 전세계 에너지 요구의 70%을 해결할 연료에 대한 지속적인 요구가 있을 것이다. 

    풍부한 태양 에너지의 문제는 그것을 붙잡아 두는 것이다. 자연은 박테리아에서 대규모 숲까지 광합성으로 태양에너지의 효율적인 활용을 완성시켰다. 최근 유럽에서는 이 과정을 이해하고 모방하는 것이 이루어져 과학자들은 이 과정을 통해 상업적인 규모로 연료 생산을 할수 있다는 자신감을 얻었다. 연구의 핵심은 장기적으로 안정적이면서도 지속적인 에너지 공급이 가능하도록 자연적이며 인공적인 태양에너지 전환 시스템을 만들기 위해 생물계(biological system)에서 영감을 얻는 것이다. 초점은 기술 사용으로 인간 경제의 생태학적인 흔적은 줄이고, 지구적인 생태 능력을 향상시켜 환경적으로 깨끗한 기술을 이용하는 것이다.
     
    ESF 실무팀(task force)은 청정 연료 생산을 위한 세가지가 유럽에서 이루어져야 한다고 보았다.
    1.       현재의 태양전지 기술을 확대 응용해서 태양의 복사(radiation)에서 직접 청정 연료를 만든다.  
    2.       태양의 복사를 수집하고 이끌고, 적용하기 위해 자연의 광합성을 모방한 인공적, 화학적인 생체모방 장치를 건설한다. 예를 들어, 물을 분해하고, 대기의 이산화 탄소를 전환하며, 다양한 형태의 환경 청정 연료를 생산하는 것이다.
    3.       간접적이며 비효율적인 과정을 통해 연료로 전환되는 탄수화물보다는 수소와 메탄올처럼 직접적으로 연료를 생산하는 자연적인 시스템으로 바꾼다. 
     
    이 세가지 연구 주제는 모두 다 근본적인 연구를 탐구해서 광합성에서 물을 수소와 산소로 분해하는 것과 관련된 엄밀한 분자 기제를 드러낼 것이다. 25억년 전에 진화한 이 과정은 대기의 이산화 탄소를 탄수화물로 바꿔 동물이 살수 있는 환경을 만들었고, 모든 화석 연료를 생산하여, 인간이 다시금 이산화탄소로 돌아가게 하고 환경에 재앙이 미치도록 하였다. 그런데 동일한 과정이 다시 구원의 방법을 쥐고 있다.
     
    식물과 미생물의 광합성이 만드는 것은 탄수화물이지만 일부 조류와(algae) 시아노박테리아는 햇빛을 이용해서 물에서 직접 수소를 생산하여, 생산량을 늘리는 유전자 조작과. 적절한 인공적인 시스템을 만드는 기초를 제공한다. 더구나 광합성은 질산염과, 현재 산업적으로 생산되는 화학산업의 귀한 화학물질을 생산한다. 유럽 연구 프로그램은 태양 에너지를 훨씬 높은 효율성으로 직접 화학물질로 변환하는 시스템도 개발하는 것이다. 이는 무제한 에너지 생산뿐 아니라, 전반적인 청정 재생 에너지 혁신의 일부로 대기 주의 이산화탄소를 산업화 이전의 수준으로 되돌릴 수 있다.
     
    연구에는 여러 가지 어려움이 있다. 첫째는 자연의 광합성 시스템 기능을 모방하는 것인데, 특히, 약간의 칼슘과 더불어 4개의 망간 원자로 구성된 촉매를 통해 물을 수소와 산소로 분해하는 식물 잎에 있는 효소 복합체를 모방하는 광합성II 과정이다. 이 도전에 최근 상당한 진전이 이루어졌다. EST회의에 참여한 참석자들은 태양 연료 프로젝트를 ‘인공 잎사귀(artificial leaf)’ 건설을 위한 탐구로 설명한다. 2050년 쯤이면 유럽과 여러 지역에서 상당 연료를 인공 잎을 통해서 얻으리라는 믿음이 커진다. 이 기술을 앞서 성취하기 위해선 시간을 지체할 여유가 없다.
     
    목 차
    서문
    목차
    도입
    청정 연료 생산을 위한 기본 연구 조건-우선 연구 방향에 대한 안내
    용어
    URL
    참여자와 다른 주요 공헌
    참조

    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 486

    2008.12.18

    연구인프라에 대한 유럽전략포럼(ESFRI, European Strategy Forum on Research Infrastructures)은 지난 2006년 10월 유럽의 연구 인프라와 관련된 35개의 주요 프로젝트를 담고 있는 로드맵을 발표했었다. 12월 9일 프랑스의 베르사이유에서 열린 연구인프라에 관한 콘퍼런스는 1차 로드맵에서 계획된 프로젝트들에 대한 점검과 함께, 제 2차 로드맵을 소개하는 기회가 되었다. 1차 로드맵에 비해서 10개의 연구 인프라가 첨가되었는데, 그의 선두는 대기에서 일어나는 프로세스 연구를 위한 레이더 시스템의 성능 향상, 세계 환경 변화 연구를 위한 북극 관측 시설(Arctiv Observation Facility) 등, 환경과학 분야가 차지했다. 

    의학과 생물학 분야도 전략적으로 중요한 분야로 부각되었다. 기존의 혹은 새로 발생한 전염병의 위험에 대응하고, 생의학영상(biomedical imaging) 기술의 생물학적, 의학적, 다양한 적용을 위한 인프라 프로젝트와 산학의 연구원들이 생리활성분자(bioactive molecules) 개발을 위한 자원에 접근하게 할 새로운 개방 감시 플랫폼(open screening platform)이 추가되었다. 재료 과학 부문에서는 단 하나의 인프라(유럽 자기장 실험실)가 추가되었다. 

    2차 로드맵은 44개의 프로젝트를 포함한다. 2006년도의 1차 로드맵의 35개 프로젝트 중에서, EROHS(European resource observatory for the humanities and social sciences)는 그 주제가 다른 여러 프로젝트에서 겹친다는 이유로 취소되었다. 

    현재의 경제 위기 상황에서 프로젝트의 재정 지원에 대한 문제가 제기될 것이다. 그렇지만 콘퍼런스의 참석자들은 전반적인 연구와 특별히 인프라로의 투자가 경제 재개를 위해 필수적이라고 입을 모았다. 포토치닉 연구 과학담당 집행위원은 ' 우리는 오늘날 경제적으로 어려운 시기를 지나고 있다. 그러므로 점점 더 복잡해지고 비용이 많이 들어가는 연구 시설과 장비를 위한 재원을 최적화하는 것이 중요하다'고 설명한다. 프랑스의 발레리 페크레스(Valerie Pecresse) 고등교육 연구부 장관도 연구 인프라를 '경제 위기에 대응하기 위한 무기'에 비교하면서 중요성을 강조했다. 

    경제 침체가 계속되고 있지만 제 1차 로드맵에서 계획된 인프라에서 진보가 이루어지고 있는 것으로 확인되었다. 7개의 인프라가 이미 건설 중이거나 그의 구축을 위해 필요한 자금과 승인이 확보되었다. 이미 시작된 프로젝트 중에는 유럽 싱크로트론 방사광 시설(ESRF, European Synchrotron Radiation Facility)의 현대화, 반양자와 이온 연구(Antiproton and Ion Research) 시설, 그리고 X선 자유전자 레이저(X-ray Free Electron Laser) 등이 있다. 

    11개의 프로젝트들의 경우 승인과 재원의 차원에서 아직 완전하게 준비되지 않았지만 진보를 보이고 있다. 많은 경우에, 이들 인프라의 준비 단계는 유럽연합의 제 7차 프레임워크 프로그램의 일환에서 지원되었다. 

    국가적 차원에서는 약 16개 유럽 회원국들이 국가 로드맵을 발표했거나 이를 작성 중이거나 업데이트시키는 단계에 있다. 대부분의 국가적 로드맵들은 ESFRI에 의해 식별된 유럽의 우선권들과 소규모의 국가우선권에 합치되는 프로젝트들을 함께 담고 있다. 

    콘퍼런스를 통해서 2006년 로드맵의 실시에 따른 문제점이 지적되었다. ESFRI는 전략포럼이 인정한 모든 프로젝트들에서 e-인프라의 중요성을 부각시켜왔는데, 일부 연구 분야는 자신들의 기초데이터(raw data)의 공개가 제대로 이루어지지 않고 있는 것으로 지적되었다. 인프라의 지리적 분포 역시 문제점의 하나로 제기되었고, ESFRI는 계속적으로 이의 분산을 꾀해 나갈 것이다. 유럽의 인프라들에 대한 또 다른 문제의 하나는 법적 장치(legal framework)의 부재이다. 유럽집행위원회는 지난 여름에 법적 장치를 제안했었고 유럽 연구 장관들은 거의 모두 동의했지만 이들 인프라에 대한 부가가치세(VTA)의 면제 결정에 대한 합의가 이루어지지 않고 있는 상태이다. 이 문제의 해결은 유럽연합의 차기 의장국 체코로 넘겨지게 될 것이다. 

    포토치닉 집행위원은 이들 연구 인프라에 대한 법적, 세제적 제한을 철폐하지 않으면 ESFRI 프로젝트는 수년이 지체되게 될 것이고, 결과적으로 유럽이 연구 분야에서 가지고 있는 선도자로서의 잠재력을 발휘할 수 없다고 평가하면서, 회원국 연구장관들에게 법적 장치의 승인을 더 이상 미루지 말 것을 촉구했다.

    * www.ndsl.kr (GTB 참조)
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 485

    2016.12.09

    카자톰프롬(KazAtomProm), CGN, 아레바는 카자흐스탄에 핵연료 성형 공장을 착공한다고 발표했다. 아레바의 성형 기술을 이용하는 이 공장의 운영은 카자톰프롬과 중국원자력그룹(China General Nuclear Power Corporation, CGNPC)이 설립한 합작법인이 맡게 된다.

    연간 200 톤의 핵연료집합체를 생산할 수 있는 용량의 이 핵연료 공장은 2020년부터 가동을 시작할 예정이다. 카자톰프롬의 자회사 울바 야금 공장(UMP)이 지분의 51%, CGNPC의 자회사 CGN-URC가 49%를 갖는 합작법인 울바-FA가 공장을 운영할 것이다.

    아레바와 울바-FA는 성형 기술, 엔지니어링 문서, 핵심 생산 장비 및 인련 훈련을 제공하는 계약을 체결했다. 그리고 카자톰프롬은 핵연료 공장을 보유함으로써 전략적인 통합 핵연료주기를 수직으로 완성할 수 있게 되었다.

    현재 카자흐스탄은 세계 우라늄 생산을 주도하고 있는데, 2015년에 전체 생산의 39%를 달성했고, 이미 UMP에 연간 2000 톤의 핵연료 펠릿을 생산하는 능력도 확보하고 있다. 카자톰프롬은 2030년까지 세계 핵연료 성형 시장의 1/3을 차지하는 목표를 세웠다.

    카자흐스탄은 중국에 핵연료를 수출하는 주공급자가 되고자 한다. 지난 11월, 카자톰프롬과 정부 당국자들이 중국을 방문하여 카자흐스탄의 우라늄을 중국에 수출하는 것을 비롯하여 우라늄 채굴과 원자력 분야에서 협력을 향상하기 위한 회담을 가졌다.

    이 새로운 공장은 20년 동안 핵연료를 공급할 수 있는 시장을 보장받을 것으로 예상한다. 이 공장 건설 투자금의 절반인 1억 4,700만 달러는 중국이 지원할 것이다.

    세계에서 가장 공격적으로 원자력발전을 도입하고 있는 국가인 중국이 안정적인 핵연료 공급을 확보하기 위해 우라늄 자원 부국인 카자흐스탄에 핵연료 성형 공장 건설에 참여하여 자원 외교는 어떤 것이어야 하는가를 보여주고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 카자흐스탄;중국;핵연료공장;아레바 2. Kazakhstan;China;nuclear fuel fabrication plant;Areva
  • 484

    2017.01.26

    2017년 1월 19일 모스크바에서 러시아국영 원자력기업인 Rosatom과 이란원자력기구(AEOI, Atomic Energy Organization of Iran)는 원자력의 평화적 이용을 위해 협력을 증진하는 협정문서에 서명했다. 더불어 Rosatom의 핵연료 자회사 TVEL과 AEOI는 이란 Fordow 연료농축공장 2단계 가스 원심분리기 변경에 대한 사전 설계작업에 대한 계약도 체결했다.

    AEOI 관계자는 2일간 모스크바 방문을 통해 지난 2015년 7월 체결되고 2016년 1월 16일 시작된 공동포괄행동계획(JCPOA, Joint Comprehensive Plan of Action)의 진전방향을 논의했다. 한편 JCPOA에 참여하는 국가는 이란과 E3 / EU + 3 (중국, 프랑스, 독일, 러시아, 영국 및 미국을 말하며 P5 + 1 및 유럽 연합이라고도 함)이다. 이란은 우라늄 농축활동을 제한하고 중간 정도까지 농축된 우라늄 제거 및 향후 15년간 저농축 우라늄의 비축을 제한하기로 합의했다.

    Rosatom측은 러시아원자력발전소연구소 (Russian Research Institute for Nuclear Power Plant Operation, VNIIAES)와 Rusatom Service 등 자회사 2곳이 이란 Bushehr 원전에 러시아의 기술지원을 제공하는 회사 설립계획에 대한 전문가평가를 착수했다고 밝혔다. 새로 설립될 이 회사는 작업의 신뢰성, 안전성 및 효율성을 향상시키는 것을 주목적으로 하며 핵연료 취급, 중성자 물리 계산, 장비 시운전, 원전 유 보수 전략 수립과 같은 분야에서 프로젝트 완성시까지 약 3년간 Bushehr 발전소 인력에게 방법론적 및 기술적 지원을 제공하게 된다.

    러시아가 건설한 Bushehr 1호기는 2011년  9월 3일에 전력망에 연결되어 중동 최초의 원자력 발전소가 되었다. Bushehr 프로젝트 종합건설사로 Rosatom사의 자회사인 ASE와 이란 원자력발전사는 2014년 11월에 Bushehr 원전 2,3호기에 대한 EPC 턴키 계약을 체결했다. ASE측은 총용량 2,100MWe에 달하는 2기의 VVER-1000 원자로가 최신 안전기능을 포함한 Generation III + 기술을 이용해 건설된다고 밝혔다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 러시아, 이란, 핵비확산 2. Russia, Iran, Non proliferation
  • 483

    2016.11.09

    캐나다 원자로 설계기업인 스타코어 원자력(StarCore Nuclear)이 자사의 4세대 고온 가스 냉각로(HTGR)에 대한 공급자 설계 검토 절차 신청서를 캐나다원자력안전위원회(CNSC)에 제출했다. 몬트리올에 기반을 둔 스타코어는 2008년에 창립되어 캐나다 격오지에 전기와 물을 공급하는 소형 모듈라 원자로(SMR) 개발에 집중하고 있다. 이 회사의 표준 HTGR 원자로는 전기출력 20 MWe(열출력 36 MWth)로 트럭으로 운반할 수 있을 정도로 작은 원자로를 결합할 경우 100 MWe까지 확장이 가능하다. 헬륨을 냉각재로 사용하는 이 원자로는 트리소(Triso) 연료를 사용한다. 이 연료는 BWXT 테크놀로지가 제작한 탄소로 코팅된 우라늄을 구형 입자로 가공한 것으로 작은 개별 입자로부터 1차 격납계통에 효율적으로 장전될 수 있다.

    이 외에도 큰 음의 열계수를 가지도록 설계된 “고유 안전성"으로 노심용융 가능성이 없다. 방사성화되지 않는 헬륨을 사용하기 때문에 어떤 냉각수 상실 사고도 환경에 영향을 주지 않는다. 이 원자로는 지하 50 미터에 위치한 콘크리트 사일로에 설치되며 10톤짜리 덮개로 보호된다. 스타코어는 이 원자로의 발전단가를 kWh당 0.18 캐나다 달러 이하가 될 것으로 예상하고 있다.

    CNSC의 예비 인허가 공급자 검토 절차는 선택사항으로 공급사의 원자로 설계를 기반으로 원자력발전소의 설계를 평가하는 과정이다. 3단계 검토는 신규 원자력발전소 인허가 절차에 요구사항은 아니지만 캐나다 원자력 규제요건 및 기대치와 부합하는지를 인증하는 목표에 따라 수행되는 것이다. 올해 초 CNSC는 테러스트리얼 에너지(Terrestrial Energy)의 일체형 용융염 원자로 설계 개념에 대한 1차 공급자 설계 검토 수행에 합의한 바 있다.

    전 세계적으로 소형 모듈라 원자로에 대한 연구 개발이 한창인 가운데, 캐나다에서 헬륨을 냉각재로 사용하는 고온 가스 냉각로에 대한 설계 검토가 시작되어 소형 원자로 분야의 경쟁이 한층 더 치열해짐을 보여준다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 고온가스냉각로;소형모듈라원자로;캐나다원자력안전위원회 2. HTGR;SMR;CNSC
  • 482

    2017.09.15

    네델란드 Petten에 있는 고 플럭스 원자로(HFR, High Flux Reactor)에서 리튬과 불화토륨염 혼합물에 대한 조사시험이 진행되고 있다. 이 실험결과로 용융염원자로(MSR, molten salt reactors)의 안전한 운전을 위한 새로운 데이터를 얻을 것으로 기대된다.

    용융염원자로는 용융된 불화물염이나 염화물염에 녹인 연료를 사용한다. 연료가 액체이기 때문에 열을 생산하는 연료와 열을 전달하는 냉각재로서 동시에 활용된다. 이 때문에 이런 형태의 원자로는 노심용융을 일으키는 냉각재상실사고를 일으키지 않는다. 용융염원자로 기본기술은 새로운 것이 아니다. 이미 1960년대에 Oak Ridge 국립연구소에서 이미 7.4 MWt급 시험용 원자로인 MSRE(Molten Salt Reactor Experiment)가 시연되었고 1965년부터 1969년까지 운영되었다.

    NRG(Nuclear Research and Consultancy Group) 측은 경제부가 후원하는 원자력연구프로그램의 일환으로 용융염원자로 연구를 수행하고 있다고 밝혔다. 이 연구는 독일 Karlsruhe에 있는 유럽연합의 JRC(Joint Research Centre)와 협력 하에 진행되고 있다. JRC는 리튬과 불화토륨염으로 구성된 연료를 개발했다. NRG는 이 연료 시료에 대해 2017년 8월 10일부터 HFR에서 방사선 조사(irradiation)를 시작했다. 조사된 시료는 JRC측이 분석하게 된다.

    방사선 조사는 조사 중과 조사 후 염혼합물의 안정성, 핵분열생성기체 발생여부 및 주변 재질과의 반응여부 등을 파악하기 위해 수행되고 있다. 이 실험은 원래 작년에 시작될 예정이었으나 NRG측이 용융염 방사선조사 실험경험이 적어 추가연구가 필요해서 지연 착수되었다.

    MSR 개념을 다시 살려내는데 현재 관심의 대부분은 핵분열핵종인 우라늄-233으로 변환하기 위해 토륨을 사용하는 것이다. MSR 설계개념은 여러가지로 다양하며 토륨을 사용하는 MSR 상용화를 위한 도전도 존재하는 것이 사실이다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 조사시험,불화토륨염,용융염원자로 2. irradiation test,thorium fluoride salt,MSR(molten salt reactors)
  • 481

    2017.08.16

    세계 방사성동위원소 생산회사들은 2016년 캐나다의 NRU(National Research Universal) 원자로가 동위원소 생산을 중단함에 따라 발생한 공급능력 손실을 만회하기 위해 노력해 왔다. 세계적인 의료용 방사성 동위원소 수요를 충족하기 위해 새로운 생산시설 건설이 미국에서 착수되었다.

    세계에서 가장 크고 다재다능한 NRU 원자로는 2016년 10월 동위원소 생산을 중단했고 2018년 3월 폐로될 예정이다. NRU는 세계 Mo-99(molybdenum-99) 수요의 40%를 생산해 왔다. 이후 오스트레일리아, 유럽, 러시아 및 남아공의 연구용 원자로에서 수요량을 공급하고 하다.

    Mo-99는 핵의학에서 가장 널리 사용되는 의료용 방사성동위원소인 Tc-99m의 선행핵이다. 반감기가 66시간에 불과하기 때문에 Mo-99는 재고를 쌓아둘수 없어 공급불안이 그간 문제였다. 대부분의 Mo-99는 현재 고농축우라늄 표적핵으로부터 생산되고 있으며 이 때문에 핵확산의 잠재적 위험이 있다. 미국은 1989년 이후에 Mo-99을 상업적으로 생산하지 않고 있다. 2009년 이후 미 에너지부의 국가핵안보청(NNSA, National Nuclear Security Administration)은 고농축우라늄 없이 Mo-99을 생산하는 방법을 기업과 연구해 왔다.

    2017년 8월 3일 Shine Medical Technologies사는 Wisconsin 주 Janesville에 새로운 동위원소 생산시설을 착공했다고 밝혔다. 이 시설을 통해 Mo-99 등을 포함한 의학적으로 중요한 방사성 동위원소를 원자로가 아닌 가속기구동 미임계장치(accelerator-driven subcritical assembly)에서 저농축우라늄 표적핵을 조사시키는 방법으로 생산할 예정이다. 이 프로젝트는 NNSA에서 미화 2,500만 불을 지원받는다.

    Shine 측은 2013년 미 원자력규제위원(NRC)에 신청서를 냈고 2016년 2월 건설허가가 났다. 이 생산시설은 지역공항과 가까워서 신속하게 동위원소를 운반하는데 유리하다. 상업적인 생산은 2020년 초부터 가능할 것으로 전망된다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 의료용 방사성동위원소, 핵의학, 선행핵, 가속기구동 미임계장치 2. medical radioisotope, nuclear medicine, precursor, accelerator-driven subcritical assembly
  • 480

    2019.10.06

    Holtec International사는 우크라이나의 Chernobyl 사용후핵연료 중간저장시설(ISF-2, Interim Spent Nuclear Fuel Storage Facility-2)에 대한 사전시운전 프로그램, 즉 상온시험을 완료했다고 발표했다. ISF-2는 세계 최대의 건식저장시설이다.

    ISF-2 프로젝트의 주계약자는 우크라이나의 UTEM, 독일의 BNG, 이탈리아의 Maloni사다. 런던에 본부가 있는 유럽재건개발은행(European Bank for Reconstruction and Development)이 관리하는 원자력안전계정의 지원을 받는 이 프로젝트는 Chernobyl 원전 폐로에 필요한 1, 2, 3호기에서 나온 사용후핵연료의 처리와 저장을 맡게 된다. Holtec은 상온시험을 완료한 것은 주요 문제나 운영에 지장 없이 이 시설이 완전한 기능을 하는 것을 보여준 것에 의미가 있다고 밝혔다.

    ISF-2는 사업자인 Chernobyl 원자력발전소(ChNPP)가 규제기관으로부터 개별 운영허가를 받으면 공식적인 시운전에 들어간다. 이를 통해 Chernobyl 부지내 21,000 개 이상의 핵연료집합체를 각각 2개의 핵연료다발과 1개의 활성화된 연결봉 등 3개의 부분으로 분해하여 특수 제작된 '핫 셀'에 넣어 중간 건식저장소에 배치하는 작업이 시작될 것이다.
    Chernobyl은 1998년 Areva사가 사업을 시작한 지 13년 만에 이 사업을 인수해 프랑스가 시스템, 구조물 및 부품을 활용해 완전히 기능하는 시설을 개발했으며 필요한 경우 프랑스, 독일, 이탈리아, 미국 등으로부터 새로운 대체시스템을 도입할 수 도 있다.

    2019년 5월 6일부터 시작된 상온시험은 시설운영자가 직면할 수 있는 모든 기기, 부품 및 가능한 모든 시나리오를 포함하며, 정상운전, 활성화된 장비에 대한 원격 유지보수, 작업자의 방사선 피폭과 오염확산을 제어하는데 필요한 보조시스템 적합성 평가, 그리고 이에 대한 비정상 및 비상상황에 대한 대응을 포함하고 있다.

    ChNPP와 Holtec은 서류화 작업을 종료하고 소유주에게 저장설비를 넘겨 시운전을 착수토록 하는 과정에 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 상온시험,Chernobyl 사용후핵연료 중간저장시설(ISF-2),건식저장 2. cold test,Chernobyl Interim Spent Nuclear Fuel Storage Facility(ISF-2),dry storage
  • 479

    2006.01.13

    이미 발표된 대로 1월 11일 오전 프랑스 정부의 각료회의를 통해서 물리학자 Catherine Bréchignac 여사가 CNRS(국립과학연구소)의 소장으로 임명되었다. 화학자였던 전임 소장 Bernard Meunier는 지난 금요일 사직서를 제출하고 자리에서 물러났고, 또 그 사이에 Bernard Larrouturou 이사장은 경질되었다. Bernard Meunier CNRS 전임 소장이 Bernard Larrouturou 이사장이 제안한 개혁안에 동의하지 않은 것이 발단이되어, 지난 봄부터 시작된 양측의 팽팽한 대결 구조는 연구소를 죄어 들어가면서 위기에 처하게 했다. 이제 신임 소장의 임명과 함께 연구소는 다시 평정을 찾게 되었다. Meunier 소장은 사직서를 통해서 과도하게 그물망 같은 연구소의 행정조직 때문에 연구기관 본연의 역할인 과학적인 도전에 제대로 부응할 수 없었다고 적고 있다. 연구 장관 François Goulard는 신임 소장과 시각을 같이 하게 될 신임 이사장이 조만간 임명될 것이라고 밝혔다. '우리는 소장과 이사장 간에서 보였던 대결 양상이 다시 재현되지 않도록 CNRS의 정관에 변화를 가해야 할 것'이라고 Goulard 장관은 덧붙였다. 이는 한계성을 극복할 수 없는 '쌍두체제'에 막을 내릴 수 있도록 CNRS의 경영진에 개혁이 가해질 수 있다는 의미로 해석된다. 전임 소장에 비해서 Bréchignac 신임 소장에게 더 강한 직권과 더 큰 특권이 주어질 것으로 관망된다. 올해로 59세인 신임 소장 Catherine Bréchignac 여사는 1971년에 CNRS에 들어갔다. 그녀는 원자핵물리(nuclear physics)와 입자 물리(particle physics)의 합류점에 위치시킬 수 있는 원자 물리(Atomic physics) 전문가라고 CNRS는 밝혔다. 그녀는 1985년에 연구국장이 되었고, 1989년에서 1995년까지 오르세(Orsay)의 Aimé Cotton 연구소의 책임자로 활약했으며, 95년부터 97년까지는 물리와 수학 부를 이끌었다. 그리고 이 기간에 3년 임기의 CNRS 이사장으로 임명되었다. Catherine Bréchignac 여사는 1994년에는 CNRS에서 시상하는 은상을 받은 바 있다.
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :