본문 바로가기

Report

All 722 Page 26/73

검색
  • 472

    2016.12.09

    카자톰프롬(KazAtomProm), CGN, 아레바는 카자흐스탄에 핵연료 성형 공장을 착공한다고 발표했다. 아레바의 성형 기술을 이용하는 이 공장의 운영은 카자톰프롬과 중국원자력그룹(China General Nuclear Power Corporation, CGNPC)이 설립한 합작법인이 맡게 된다.

    연간 200 톤의 핵연료집합체를 생산할 수 있는 용량의 이 핵연료 공장은 2020년부터 가동을 시작할 예정이다. 카자톰프롬의 자회사 울바 야금 공장(UMP)이 지분의 51%, CGNPC의 자회사 CGN-URC가 49%를 갖는 합작법인 울바-FA가 공장을 운영할 것이다.

    아레바와 울바-FA는 성형 기술, 엔지니어링 문서, 핵심 생산 장비 및 인련 훈련을 제공하는 계약을 체결했다. 그리고 카자톰프롬은 핵연료 공장을 보유함으로써 전략적인 통합 핵연료주기를 수직으로 완성할 수 있게 되었다.

    현재 카자흐스탄은 세계 우라늄 생산을 주도하고 있는데, 2015년에 전체 생산의 39%를 달성했고, 이미 UMP에 연간 2000 톤의 핵연료 펠릿을 생산하는 능력도 확보하고 있다. 카자톰프롬은 2030년까지 세계 핵연료 성형 시장의 1/3을 차지하는 목표를 세웠다.

    카자흐스탄은 중국에 핵연료를 수출하는 주공급자가 되고자 한다. 지난 11월, 카자톰프롬과 정부 당국자들이 중국을 방문하여 카자흐스탄의 우라늄을 중국에 수출하는 것을 비롯하여 우라늄 채굴과 원자력 분야에서 협력을 향상하기 위한 회담을 가졌다.

    이 새로운 공장은 20년 동안 핵연료를 공급할 수 있는 시장을 보장받을 것으로 예상한다. 이 공장 건설 투자금의 절반인 1억 4,700만 달러는 중국이 지원할 것이다.

    세계에서 가장 공격적으로 원자력발전을 도입하고 있는 국가인 중국이 안정적인 핵연료 공급을 확보하기 위해 우라늄 자원 부국인 카자흐스탄에 핵연료 성형 공장 건설에 참여하여 자원 외교는 어떤 것이어야 하는가를 보여주고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 카자흐스탄;중국;핵연료공장;아레바 2. Kazakhstan;China;nuclear fuel fabrication plant;Areva
  • 471

    2016.10.31

    인도의 다국적 기업인 Essel그룹의 자회사인 EGME사(Essel Group Middle East)는 스웨덴과 캐나다 간에 납냉각 소형원자로기술을 개발하는 LeadCold Reactors사에 미화 1,800만 불을 투자하기로 합의했다고 밝혔다. EGME사는 이 투자가 LeadCold측이 개발하고 있는 SEALER 원자로(Swedish Advanced Lead Reactor)가 캐나다원자력안전위원회(CNSC, Canadian Nuclear Safety Commission)로부터 인허가전 설계검토를 획득하는 것을 지원하고 캐나다 내 건설허가를 받기 위해 필요한 기술개발을 돕기 위한 것이라고 덧붙였다. LeadCold측은 인허가전 사전검토 1단계를 올 해 안에 시작하고 캐나다 내 건설허가를 2021년까지 받아서 2025년에 운영을 개시하는 것을 목표로 하고 있는 것으로 알려졌다.

    LeadCold측은 SEALER 원자로는 납냉각 고속원자로로 19.9% 농축산화우라늄을 연료로 하여 최소화된 노심을 채택한 원자로라고 밝혔다. 전력생산 가능량은 3~10 MWe이며 90% 이용율을 가정할 때 원자로심 수명은 전출력연도로 환산해서 10~30년에 이르며 납냉각재의 설계 최대온도의 섭씨 450도 이하로 유지할 수 있기 때문에 핵연료피복재와 구조재질의 부식을 관리가능한 정도로 줄일 수 있는 것으로 알려져 있다.

    납을 냉각재로 사용한다는 것은 핵연료봉의 건전성을 위협받지 않고 장기간 완전 소외전원 상실시에도 원자로심을 냉각할 수 있다는 것을 의미하며 휘발성 핵분열생성물도 99.99% 이상 납냉각재 내에 화학적으로 유지할 수 있어서 어떤 사고가 발생하더라도 주민 대피와 같은 조치가 필요하지 않게 되는 장점이 있다. 하지만 납은 중금속으로서 냉각재 배관 파열 등으로 납이 대기에 누출시 환경 및 인간에 많은 피해가 있을 수 있으며 비중이 커서 냉각재 펌프의 설계 등에 많은 기술적 노하우가 필요한 것이 단점이라 할 수 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 납, 냉각재, 고속로 2. lead, coolant, fast reactor
  • 470

    2017.01.10

    미국 GE Hitachi Nuclear Energy(GEH)가 스웨덴 Oskarshamn 원전 1,2호기 원자로 내장품을 해체하는 3년 짜리 계약을 수주했다. 2016년 12월 19일 원전 운영사인 OKG AB와 맺은 계약에 따라서  GEH가 원자로 2기의 압력관 내장품을 최종 처분하는 작업을 맡게 되었다. 이 작업은 해체, 절단, 그리고 최종 처분을 위한 포장 과정으로 이루어진다.

    Oskarshamn 2호기의 내장품 해체작업은 2018년 1월에, 1호기 해체작업은 2019년에 시작될 것으로 예상된다. 해당 해체작업은 2020년 초반에 완료될 예정이다. GEH측은 해당 프로젝트는 유럽 원자로 해체사업에 진출하는 돌파구적인 프로젝트이며 GE와 (구)Alstom의 글로벌 공급망으로 구성된 ‘GE store’의 풍부한 자원을 활용해 세계 자력계에 최상의 안전성과 가성비가 뛰어난 서비스를 제공하게 될 것이라고 밝혔다.  

    OKG의 대주주인 독일 EOn은 2015년 10월 Oskarshamn 1호기와 2호기가 영구적으로 폐쇄될 것이라고 밝힌 바 있다. 3호기는 이 결정과 무관하다. 또한 1호기가 2017년과 2019년 사이에 폐쇄될 것이고 2호기에 또한 더 이상의 투자는 없을 것이며 원자로도 재가동되지 않을 것이라고 밝혔었다. 더불어 2016년 2월 OKG는 2017년 6월 말 예정된 계획정지를 시작으로 Oskarshamn 1호기를 폐쇄하기로 결정했다고 밝혔다.

    473 MWe 용량의 비등수형 경수로(BWR, boiling water reactor)인 Oskarshamn 1호기는 1972년부터 가동되었으며 638 MWe 용량의 BWR인 Oskarshamn 2호기는 1974년에 첫 가동을 시작한 바 있다. 1,400MWe 용량의 BWR인 Oskarshamn 3호기는 1985년에 처음 가동되었다. 

    OKG측은 2045년까지 Oskarshamn 3호기가 기후변화에 적합한 전력을 생산하기 위한 조건 중 하나로 Oskarshamn 1,2호기 해체작업이 안전하고 효율적으로 이루어져야 한다고 밝히면서 이 계약 서명이 해당 작업에 진일보가 되었다고 평가했다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 해체, 오스캬샴, 비등수형경수로 2. dismantling, Oskarshamn, boiling water reactor (BWR)
  • 469

    2023.01.16

    □ 국제에너지기구(IEA)는 2050년까지 탄소 중립의 달성과 청정에너지로의 원활한 전환 과정을 위해 원자력 에너지가 수행하여야 할 역할을 분석(’22.6)

    * Nuclear Power and Secure Energy Transitions



    ㅇ 최근 연료비 상승과 에너지 안보에 대한 우려가 증가함에 따라 선진국 및 개발도상국에서 원자력 발전을 중시하는 전략이 개발되고 투자 인센티브를 제공하는 등의 시장 변화 감지

    - 2050년까지 탄소중립을 달성하기 위해서는 탄소배출이 2020년에서 2030년까지 40% 감축되어야 하며 원자력 발전량이 2배로 증가하고 발전 비중이 8%로 높아져야 함

    - 2022년 기준 413GW 정도인 원자력 에너지 발전량은 2050년까지 812GW로 증가해야 하며, 이러한 원자력 발전 증가는 중국 및 개발도상국에 집중될 것으로 전망



    8-1.PNG


    ㅇ 현재 선진국의 원자력 발전소 중 대다수는 수명 종료로 폐쇄를 앞두고 있으며 미국과 유럽연합 등 원자력 발전 용량은 2040년까지 70% 또는 80GW 감소 예측

    - 여러 국가에서는 발전 시설의 수명 연장 방안을 논의하였으며 이로 인해 50GW가 넘는 발전용량이 연장되었고, 앞으로 최대 57GW의 발전용량을 유지하는 방안 논의 중



    8-2.PNG


    ㅇ 소형원자로*는 비용과 규모, 리스크가 전통적인 원자력 발전에 비해 적다는 점에서 주목받고 있으며, 캐나다, 프랑스, 영국, 미국 등에서 지지

    * Small Modular Reactors, SMRs

    - 2050년까지 필요한 탄소배출 감축의 절반 정도는 현재 상업적으로 활용되지 않는 기술을 기반으로 하며, 300MW 미만의 용량을 가지는 첨단 원자로인 소형원자로도 이러한 기술에 포함

    - 소형원자로는 전통적인 시설의 1/3 규모로 비용과 규모, 프로젝트 리스크가 낮다는 점에서 사회적인 수용성이 높고 민간 투자를 유치하기에 용이

    * 현재 캐나다, 프랑스, 영국, 미국 등에서 소형원자로(SMRs) 사업 추진중

    - 화석연료 발전소 부지를 재활용할 수 있어 기존의 송전 시설이나 냉각수, 숙련된 인력을 활용할 수 있다는 장점도 지님



    8-3.PNG

    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 468

    2016.11.07

    NRG그룹(Nuclear Research and Consultancy Group)은 750°C 이상의 온도에서 1/1,000 mm의 정밀도로 원자로 내에서 중성자에 조사되는 동안 각종 재질의 팽창을 측정할 수 있는 기술을 네델란드 Petten에 있는 HFR(High Flux Reactor) 원자로에서 성공적으로 입증했다고 2016년 11월 2일 밝혔다. 이에 따라 개량형 원자로에 사용될 구조용 재료 및 핵연료용 재료 개발에 도움이 될 전망이다.

    NRG측은 지금까지는 750°C가 넘는 중성자속이 높은 원자로 내에서 9미터 거리에서 1/1,000mm 급의 정밀도로 각종 구조재의 팽창정도를 측정하는 것은 매우 힘든 일이었다고 밝혔다. 하지만 서로 다른 여러 가지의 개념을 개발하여 반복적인 실험실 내 시험을 통해 개념의 수정하고 공고화함으로써 최종 개념을 1년 전에 정립한 것으로 전해졌다. 이 기술개발에는 다수의 재료 및 핵연료 전문가, 핵공학자 및 기술자들이 참여했으며 이런 종류의 기술이 원자로 적용되는 것은 처음인 것으로 알려졌다.

    NRG는 지금 생성하고 있는 실험자료는 원자로 구조재와 핵연료 성능모델의 새로운 시대를 창출하는데 입력 및 검증정보로 사용될 것이라고 밝혔다. 또한, 이 기술이 더 나은 지식을 제공하고 향후 원자력발전소 기술개발에서 구조재와 연료로 사용될 재질을 더 효율적으로 개발할 수 있도록 할 것이므로 원자력산업계가 지금까지 이 기술의 등장을 기다려 왔다고 전했다. 올 12월에는 더 높은 중성자속(flux) 내에서 시험을 진행할 예정이며 이 지점의 온도는 1,200°C가 넘을 것으로 예상했다.

    한편, HFR 원자로는 재료시험에 사용되기도 하지만 세계 최대의 방사성동위원소 생산시설로서 유럽에서 사용되는 의료용 동위원소의 70%를 생산하여 전 세계적으로는 의료용 동위원소 생산분야에서 30%의 점유율을 갖고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 구조재, 핵연료, 팽창 2. material, fuel, expansion
  • 467

    2017.06.29

    러시아 국영원자력회사인 Rosatom과 V4G4 Centre of Excellence(이하 V4G4 Centre)는 러시아의  MBIR(Multi-Purpose Research Reactor)을 중심으로 하는 IRC( International Research Centre)와 연구참여를 위한 양해각서에 서명했다고 2017년 6월 26일 밝혔다. MBIR은 Dimitrovgrad에 있는 NIIAR( Research Institute of Atomic Reactors)에 건설되고 있다.


    IRC는 MBIR 원자로 사용시간 배분을 조정하며 협력연구를 위한 플랫폼을 제공하게 된다. IRC는 고속증식로 분야 세계 최고의 중심이 되는 것을 목표로 하고 있다. 이번 양해각서는 IAEA, 러시아 정부 및 Rosatom이 공동 후원하여 Yekaterinburg에서 개최된 FR-17(International Conference on Fast Reactors and Related Fuel Cycles)에서 서명되었다.

    V4G4 Centre는 2013년 체코, 헝가리, 폴란드 및 슬로바키아의 원자력산업연구기관 및 엔지니어링 회사들이 설립하였다. 슬로바키아에 있는 V4G4는 체코의 ÚJV Rež, 헝가리의 Academy of Sciences Centre for Energy Research (MTA EK), 폴란드의 National Centre for Nuclear Research 및 슬로바키아의 엔지니어링 회사인 VUJE가 공동 설립하였다.
    MBIR은 2015년 9월부터 NIIAR에 건설되고 있으며 2020년 준공될 예정이다. 열출력 150MWt급으로 냉각재로는 나트륨을 사용하며 VMOX(vibro-packed mixed-oxide) 연료를 사용하다. VMOX 연료는 소결체 형태가 아닌 우라늄-플루토늄 혼합산화물 분말과 새로운 우라늄 산화물 분말을 직접 핵연료집합체 피복관에 장입한 혼합산화물연료의 러시아산 변종이다. MBIR은 4세대 고속중성자로에 들어갈 재료시험에 사용될 예정이다.

    IRC는 이미 체코, 대한민국, 남아공 및 미국과 협력협정을 맺고 있으며 카자흐스탄, 프랑스, 중국 및 일본에 자문을 제공하고 있다. 올 6월 초 VEB(Vneshekonombank)과 Rosatom은 IRC 및 MBIR 지원을 위한 협력협정에 서명한 바 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 다목적 연구로, 고속증식로, 4세대 고속중성자로 2. MBIR(Multi-Purpose Research Reactor), Fast Breeder, Generation IV fast neutron reactor
  • 466

    2017.04.12

    영국 원자력폐로청(NDA, Nuclear Decommissioning Authority)은 2017년 4월 1일부터 2020년 3월 31일까지의 3개년 사업계획을 발표했다. 2016년 4월 나온 NDA 전략계획에 기초해서 재무부와 에너지산업부의 재정투입계획에 맞추어 추진목표를 제시하고 17곳의 원자력부지에 대한 복구 진행계획을 밝힌 것이다.

    이 사업계획은 작년 12월 12일부터 올 2월 3일까지 공청절차를 거쳤으며 17곳의 부지에 대한 향후 20년간의 전망도 포함하고 있다. 사업계획에서 NDA는 핵심목표는 환경을 보호하기 위해 해당 부지를 안전하고 확실하며 경제적으로 복구하는 것이고 밝히면서 2017년 4월부터 2018년 3월까지의 2017/18 회계년도의 총지출은 32억 4,000만 파운드이며 이 중 23억 6,000만 파운드는 정부 재정지원임을 명시했다. Sellafield 부지의 모든 핵연료재처리가 2020년에 종료될 예정이다.

    NDA는 최근 영국 내에 산재하는 Magnox 원자로 부지에 대한 폐로관리 계약사인 Cavendish Fluor Partnership과의 계약을 상호합의로 종결한다고 밝힌 바 있다. 이는 계약범위에 들어있는 역무범위가 해당 부지에 필요한 역무와 실질적으로 다르기 때문으로 해석된다. 또한 참여사인 EnergySolutions사와 Bechtel사에도 약 900백 만 파운드의 보상금을 주고 법적분쟁을 종결했다.

    2017-2020 사업계획에 들어있는 주요 사업 마일스톤에는 저준위방사성폐기물처분장 계획 결정 2018년, THORP(Thermal Oxide Reprocessing Plant) 재처리계획 확정 2018년 말, 모든 Magnox 원자로에 대한 연료제거 및 이전 2019년, Bradwell 및 Essex에 있는 Magnox 원전 부지를 NDA 최초로 유지관리단계로 전환 2019년, PFCS(Pile Fuel Cladding Silo) 복구 조기착수 2020년 및 Magnox 재처리 완료 2020년 등이 포함되어 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 저준위방사성폐기물처분장, 매그녹스 원자로, 연료제거 2. Low Level Waste Repository, Magnox, defuel
  • 465

    2017.02.19

    호주와 중국의 연구자들이 용융염 원자로(MSR, molten salt reactor)에 사용될 새로운 차원의 물질에 대한 기계적 특성을 파악하는데 진전을 거뒀다. 호주 원자력과학기술기구(Ansto, Australian Nuclear Science and Technology Organisation)측은 니켈 몰리브덴 금속 분말에 탄화규소 입자가 첨가 된 NiMo-SiC 합금이 부식 저항성과 방사선 손상 저항성이 우수하다고 밝혔다.

    현재 운전되고 있는 상용 MSR은 없지만 Antso와 파트너십 계약을 맺은 상하이 응용물리학 연구소(Sinap, Shanghai Institute of Applied Physics)는 MSR과 토륨 에너지 연구개발 프로그램을 진행하고 있다. 탄화규소 함량을 달리한 다수의 Ni-MoSiC 합금 시편을 Sinap 실험실에서 준비하였다. Antso측은 MSR의 구조재는 고온에 강해야 하고 방사선에 내성이 있어야 하며 부식에도 강해야 한다고 밝혔다. 최근 발표된 논문에 따르면 NiMo-SiC 합금은 NiMo 매트릭스의 침전, 분산 및 고용체 강화 과정을 거쳤기 때문에 우수한 기계적 특성을 보유하고 있는 것으로 알려졌다.

    해당 강화 과정에는 기계적 합금화, 스파크 플라즈마 소결, 급냉, 고온 어닐링 등이 포함된다. 니켈에 탄화규소 입자를 첨가할 때 나타나는 분산 강화 이점은 잘 알려져 있지만 고온 강도가 낮은 MSR에 적용했을 경우에는 효과가 뛰어나지 않았다. 이 문제는 새로 NiMo-SiC 합금을 개발하여 탄화규소 입자 사이의 공간을 채워 전위 운동을 방해하는 규화니켈 나노 입자를 대체하여 해결되었다.

    이 합금은 분말 야금공정을 통해 개발되며 탄화규소와 규화니켈은 NiMo 매트릭스 내에 균일하게 분포되어 있는데, 이러한 탄화규소 입자의 균일한 분포는 표준 야금공정을 사용하여 생성할 수 없다. Antso측은 이러한 합금의 강도는 실리콘 카바이드 입자에 의한 분산 강화, 규화니켈에 의한 강수 강화 및 몰리브덴에 의한 고용체 강화의 조합에 기인한다고 밝혔다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 부식저항성, 방사선손상저항성 2. corrosion resistance, radiation damage resistance
  • 464

    2018.10.10

    미국 신규원전 프로젝트인 Vogtle 신규원전에 첫 번째 원자로냉각재펌프(RCP, reactor coolant pump)가 설치를 위해 인양됨으로써 미국 내 AP1000형 원자로 건설 프로젝트에 새로운 핵심마일스톤을 달성하게 되었다. 무게가 각각 170 톤에 달하는 4대의 RCP 중 첫 번째 펌프는 현재 Georgia주 Waynesboro 인근에 있는 Vogtle 원전 3호기 격납건물 안에 있다.

    RCP는 증기발생기에 장착될 예정이며 증기발생기의 물을 원자로 압력용기로 순환시켜 원자력발전소 안전운전을 위해 충분한 열을 전달함으로써 원자로냉각재계통(RCS, reactor coolant system)에서 핵심적인 역할을 수행하게 된다.

    Vogtle 3호기에서 진행된 다른 마일스톤에는 격납건물 외벽을 따라 차폐건물 판넬 설치를 완료한 것이 있는데 이는 거의 절반이 철로 되어 있으며 이로써 콘크리트 건물이 제자리를 잡게 되었다. 격납건물 내 운전 데크를 구성하는 최종 모듈도 현재 설치가 완료된 상태다.

    Vogtle 4호기에서는 60여 시간에 걸쳐 원자로 격납건물 내에 1,500 입방미터에 달하는 콘크리트 타설이 이뤄졌는데 이는 증기발생기와 가압기를 설치하기 위한 준비의 일환이다.

    Vogtle 원전 3호기 건설은 지난 2013년 3월 착수되었고 4호기는 같은 해 11월에 착수된 바 있다. 모두 Southern Company의 자회사인 Southern Nuclear사 및 Georgia Power사가 Westinghouse사의 부도에 따라 건설프로젝트 관리를 지난 해 맡게 되었다. 한편, Vogtle 3호기는 현재 계획으로는 2021년 11월, 4호기는 2022년 11월에 상업운전이 가능할 것으로 전망된다.

    첫 RCP 설치가 진행됨에 따라 원자로공급사인 Westinghouse사의 부도에 따라 주춤했던 Vogtle 3,4호기 신규원전건설 프로젝트가 추진에 탄력을 받으면서 새로운 전기를 맞고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 건설프로젝트, 원자로냉각재펌프, 증기발생기 2. construction project, RCP(reactor coolant pump), steam generator
  • 463

    2008.10.29

    2008년 10월 24일, 중국은 국가 핵 기술 연구개발 센터를 정식으로 건립하였다. 이 센터는 국가 핵 발전 기술 연구 공사(SNPTC:State Nuclear Power Technology Corporation Ltd.)와  칭화(清华) 대학교가 합작한 산·학·연이 공동으로 구성하는 연구 기관이다. 이 연구 개발 센터의 출자 조인식과 현판 수여식은 칭화 대학교 본관에서 성대하게 이루어 졌으며 이 센터는 “중국의 초대형 가압수로 원자로 발전 시설 건립 특별 사업을 위한 기술 개발” 을 목표로 하고 있다.

     

    국가 핵 발전 기술 연구 공사(SNPTC)와 칭화(清华) 대학교가 공동으로 건립 된 이번 국가 핵 기술 연구 개발 센터는 연구 개발 센터는 칭화 대학교 부속 핵 에너지 및 신에너지 기술 연구원이 있는 베이징 근교 창핑(昌平)기지에 위치하며 다소 독립적으로 건설 되었다.

     

    관련 사업 규정에 의하면 국가 핵 발전 기술 연구 센터는 국가 핵 발전과 칭화(清华) 대학교의 핵 기술 연구 및 개발 방면의 우수성을 조합하여 국가 첨단 대형 발전 기지를 건설을 위한 주요 기술 및 과제에 대한 문제를 연구하는 업무를 담당하게 된다. 중국 핵 발전 전략에 관한 관련 책임자에 따르면 중국은 그 동안 핵 에너지분야에 발전과 진전이 있었으며 이번 연구 개발 센터는 제4세대 핵 에너지 연구 개발의 사업을 담당 할 것이라고 했다.

     

    국가 핵 발전 사업은 중국이 제3세대 핵 에너지 개발에 대한 기술 흡수를 바탕으로 건설 공정 그리고 자주 발전을 실현 할 수 있는 핵심 사항과 연구 개발을 대표하는 것이며 미래 지향적인 대형 가압수형 원자로 기술을 위한 특별 사업의 중심에 있다. 칭화(清华)대학 핵 기술 연구원, 공정 물리학과를 주축으로 한 핵 기술 역량은 중국 핵 에너지 분야의 중요한 핵심이며 핵 기술 연구 개발 분야에서 많은 성과를 거두고 있다.


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :