본문 바로가기

Report

All 3,287,370 Page 81/328,737

검색
  • 2025

    Abstract Koalas are arboreal herbivorous marsupials, endemic to Australia. During the late 1800s and early 1900s, the number of koalas declined dramatically due to hunting for their furs. In addition, anthropogenic activities have further decimated their available habitat, and decreased population numbers. Here, we utilise 37 historic and 25 modern genomes sampled from across their historic and present geographic range, to gain insights into how their population structure and genetic diversity have changed across time; assess the genetic consequences of the period of intense hunting, and the current genetic status of this iconic Australian species. Our analyses reveal how genome-wide heterozygosity has decreased through time and unveil previously uncharacterised mitochondrial haplotypes and nuclear genotypes in the historic dataset, which are absent from today’s koala populations.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    A wideband high-efficiency circularly polarized (CP) dual-coil antenna array is presented for 60-GHz applications in this letter. The proposed CP dual-coil antenna is composed of a resonant substrate-integrated cavity (SIC) and a pair of centrally symmetrical coils, which are fed differentially by a substrate-integrated waveguide (SIW) coupling slot. A novel sequential rotation feeding technique is introduced to enhance the axial ratio (AR) and impedance bandwidths of both the 2 × 2 subarray and the 4 × 4 array. The proposed feeding network significantly improves radiation efficiency. The measured results of the fabricated prototype indicate that the proposed array achieves an impedance bandwidth of 20.8% (54.6–67.3 GHz) for |S11| ≤ −10 dB, a 3-dB AR bandwidth of 21.5% (54–67 GHz), a high radiation efficiency of 96.6%, and a peak gain reaching 19.3 dBic at 58 GHz. The proposed circularly polarized (CP) antenna element and array design stand out as strong contenders for 60-GHz wireless applications.
    • Book : 25(7)
    • Pub. Date : 2025
    • Page : pp.2211-2211
    • Keyword :
  • 2025

    For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
    • Book : 26(7)
    • Pub. Date : 2025
    • Page : pp.3310-3310
    • Keyword :
  • 2025

    Growth hormone-releasing hormone (GHRH) antagonists exert antitumor functions in different experimental cancers. However, their role in combination with radiotherapy in non-small cell lung cancer (NSCLC) remains unknown. Therefore, we investigated the radiosensitizing effect of GHRH antagonists in NSCLC. A549 and H522 NSCLC cell lines were exposed to ionizing radiation (IR) and GHRH antagonists MIA-602 and MIA-690, either individually or in combination. Cell viability and proliferation were evaluated by MTT, BrdU, flow cytofluorimetry, and clonogenic assays; gene and protein expression, signaling pathways, and apoptosis were analyzed by real-time PCR, Western blot, annexin staining, and caspase-3 assay. GHRH antagonists showed antitumor effects alone and potentiated IR-induced inhibition of cell viability and proliferation. The combination of MIA-690 and IR decreased the expression of GHRH receptor, its oncogenic splice variant 1, and IGF1 mRNA levels. Additionally, cell cycle inhibitors and proapoptotic markers were upregulated, whereas cyclins, oncogenic MYC, and the antiapoptotic protein Bcl-2 were downregulated. Radioresistance was prevented by MIA-690, which also blunted epithelial–mesenchymal transition by enhancing E-cadherin and reducing mesenchymal, oxidative, and proangiogenic effectors. Finally, both MIA-602 and MIA-690 enhanced radiosensitivity in primary human NSCLC cells. These findings highlight the potential of GHRH antagonists as radiosensitizers in NSCLC treatment.
    • Book : 26(7)
    • Pub. Date : 2025
    • Page : pp.3267-3267
    • Keyword :
  • 2025

    Background: Recurrent oral squamous cell carcinoma (re-OSCC) poses a serious therapeutic challenge and is linked to poor survival outcomes. SOX2 and NANOG, key transcription factors in cancer stem cell biology, may drive tumor progression and therapy resistance. However, their prognostic value in re-OSCC and their relationship to adjuvant therapy remain unclear. Methods: We retrospectively analyzed a single-center cohort of 94 patients with re-OSCC treated with curative intent via (1) surgery alone, (2) surgery plus adjuvant radiotherapy (RT), or (3) surgery plus adjuvant radiochemotherapy (RCT). Tissue microarrays (TMAs) were constructed from matched primary and recurrent tumors and immunohistochemical (IHC) staining for SOX2, and NANOG was quantified using H-scores. Post-recurrence overall survival (prOS) and post-recurrence disease-free survival (prDFS) were evaluated using Kaplan–Meier analysis and Cox proportional hazards models. Results: SOX2 expression and survival: Elevated SOX2 expression (H-score > 14) in re-OSCC was significantly associated with improved prOS (p = 0.013) and prDFS (p = 0.026). Notably, patients who had received adjuvant therapy (particularly RCT) showed higher SOX2 levels in recurrent tumors compared to those treated with surgery alone. NANOG expression and therapy: NANOG expression declined markedly from primary to recurrent tumors (median H-score 42.2 vs. 8.7; p < 0.001). This decline was most pronounced in patients treated with surgery alone. Despite this dynamic change, NANOG expression did not correlate significantly with prOS or prDFS. Other prognostic factors include advanced tumor stage (rT2–rT4) and lymph node involvement (rN+/x)m which remained significant predictors of worse survival in the recurrent setting, regardless of adjuvant therapy. Conclusion: SOX2 overexpression in re-OSCC correlates with better survival, suggesting a unique prognostic role distinct from primary disease. Adjuvant therapy, especially RCT, appears to maintain or elevate SOX2 levels, potentially contributing to improved treatment response. In contrast, although NANOG expression decreases in recurrence, particularly in patients who undergo surgery alone, it does not significantly affect survival outcomes. These findings underscore the importance of context-specific biomarker assessments and provide a rationale for incorporating SOX2 status into personalized treatment strategies for re-OSCC.
    • Book : 17(7)
    • Pub. Date : 2025
    • Page : pp.1181-1181
    • Keyword :
  • 2025

    Cadmium (Cd) is a toxic heavy metal that threatens public health, with kidney injury being one of the common manifestations after Cd exposure. Oxidative stress plays a crucial role in Cd-induced kidney injury, arising from an imbalance between cellular oxidation and antioxidation processes. Bromodomain-containing protein 4 (BRD4) has been identified as a significant factor in the initiation and advancement of multiple diseases, primarily due to its regulatory role in oxidative stress. Nevertheless, the specific role of BRD4 in Cd-induced kidney oxidative injury remains poorly understood. The present study demonstrates that BRD4 is activated in the kidney after Cd exposure, while JQ1 (a BRD4 inhibitor) treatment inhibits Cd-induced oxidative stress and kidney injury. Subsequently, we investigate the mechanisms by which Cd regulates oxidative stress both in vivo and in vitro. The results indicate that JQ1 treatment reduces the expression levels of NADPH oxidase 4 (Nox4), thereby alleviating mitochondrial damage and reducing reactive oxygen species (ROS) generation. Furthermore, JQ1 treatment facilitates nuclear translocation levels of Nuclear factor erythroid-derived 2-like 2 (Nrf2), thereby enhancing the antioxidant defense system in the kidney after Cd exposure. In conclusion, this study reveals that BRD4 is significantly involved in the process of Cd-induced oxidative damage in the kidney, while inhibiting BRD4 is observed to attenuate ROS generation by regulating Nox4 and enhance ROS scavenging by regulating Nrf2, which, in turn, suppresses the oxidative stress level in the kidney after Cd exposure. These findings suggest that targeting BRD4 may represent an effective strategy for the prevention and treatment of Cd-induced kidney diseases.
    • Book : 13(4)
    • Pub. Date : 2025
    • Page : pp.258-258
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page : pp.101804-101804
    • Keyword :
  • 2025

    ABSTRACTPurposeRe‐irradiation (RT2) for children with diffuse intrinsic pontine glioma (DIPG) is increasingly used upon recurrence; however, limited data are available for evaluating additional courses of radiotherapy (RT) for DIPG. The purpose of this case series was to report our institutional experience in treating patients with recurrent DIPG with three (RT3) or four (RT4) courses of RT.Material and MethodsA retrospective study of all children with DIPG treated with RT3 or RT4 at a single institution was performed. Medical records were reviewed, and composite dosimetry across all delivered courses of RT was reconstructed. All patients received conventionally fractionated photon RT at 1.8–2 Gy per day, with RT3 or RT4 dose prescriptions ranging 18–21.6 Gy in 10–12 fractions to the brainstem.ResultsFive patients were identified; four received three courses of RT while one received four to the brainstem. Median survival from the last course of radiation to death was 4 months; median survival from the first course of RT was 26 months. The median cumulative brainstem D0.03cc for all courses of radiation was 104 Gy (interquartile range: 102–112 Gy). The median time from RT2 to RT3 was 8 months, with partial neurologic recovery (80%) or stable symptoms (20%) after RT3. Radiological appearance of tumor or brainstem necrosis was reported in two patients after RT3 (40%).ConclusionsA third course of RT may be carefully considered as a treatment option for selected children with recurrent DIPG to provide palliation of neurologic symptoms.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Abstract A study was conducted to understand the mechanism of adsorption kinetic that is effective in removal of 209Po by clinoptilolite, a natural zeolite, from aquatic environments. Studies of the adsorption kinetics of 209Po were carried out by interacting zeolite with 209Po at different time intervals. Experimental polonium adsorption data obtained in our previous article were applied to some known kinetic models such as pseudo-first order, pseudo-second order, Elowich, Bangham, Homogeneous particle diffusion and Shell step models. The data obtained from the models revealed that the rate-limiting step is more compatible with the pseudo-second order model, which is based on the assumption that chemical sorption. According to the results obtained, the calculated the amount of 209Po adsorbed at equilibrium (qe) and the equilibrium rate constant of pseudo-second-order sorption (k2) were found to be 0.3302 ng g−1, − 4.4 × 10–5 ng g−1 min−1, respectively.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :