본문 바로가기

Report

All 3,276,458 Page 7/327,646

검색
  • 2025

    The proposed Electron-Ion Collider (EIC) will utilize high- luminosity high-energy electron+proton (e + p) and electron+nucleus (e + A) collisions to solve several fundamental questions including searching for gluon saturation and studying the proton/nuclear structure. Complementary to the ongoing EIC project detector technical prototype carried out by the ePIC collaboration, a Depleted Monolithic Active Pixel Sensor (i.e., MALTA2) based fast timing silicon tracking detector (FMT) has been proposed to provide additional hits for track reconstruction in the forward region at the EIC to improve the overall track reconstruction quality. The fast timing resolution of the MALTA2 technology will help reject background events at the EIC as well. Progress of latest MALTA2 R&D, the development of a new MALTA2 quad-sensor prototype module and impacts of the proposed FMT in EIC physics studies will be discussed.
    • Book : 316()
    • Pub. Date : 2025
    • Page : pp.07003-07003
    • Keyword :
  • 2025

    The electrolarynx (EL) is a common device for voice reconstruction in laryngectomy patients, but its mechanical sound source generates significant radiation noise, affecting the naturalness and acceptability of the speech. The parametric acoustic array (PAA), which produces directionally propagated difference-frequency sound waves, presents a promising alternative for creating a more natural glottal-like voice source in the trachea while reducing radiation noise. In this study, we developed a tissue-mimicking phantom to simulate human neck tissue and used a single-transducer-based PAA platform to generate modulated ultrasound signals with glottal waveform characteristics. Ultrasonic microphones captured sound signals fromthe trachea and surrounding air, and signal processing was used to isolate the difference-frequency signals. The results demonstrated that difference-frequency signals were successfully detected in the phantom’s trachea, with time-domain waveforms and frequency spectra closely resembling the designed glottal waveform (Pearson correlation coefficient = 0.9438). Additionally, radiation noise produced by the PAA was significantly lower (23 dB, p < 0.0001) compared to the traditional EL. These findings demonstrate the potential of PAA for voice source reconstruction in laryngectomy patients and suggest its capacity to enhance speech rehabilitation outcomes. Further research is required to refine the frequency range and evaluate clinical applicability.
    • Book : 25(3)
    • Pub. Date : 2025
    • Page : pp.802-802
    • Keyword :
  • 2025

    Abstract Indoleamine 2, 3-dioxygenase 1 (IDO1) has been recognized as an enzyme involved in tryptophan catabolism with immunosuppressive ability. This study determined to investigate the impact of IDO1 on glioblastoma multiforme (GBM) cells. Here, we showed that the expression of IDO1 was markedly increased in patients with glioma and associated with GBM progression. IDO1 overexpression suppressed ferroptotic cell death, reduced ROS and lipid peroxide generation in GBM cells. IDO1 expression increased the SLC7A11 mRNA stability through FTO-dependent m6A methylation. Mechanistically, IDO1 promoted the AhR expression and nuclear translocation, thus facilitating AhR recruitment at the promoter regions of FTO gene and negatively regulating its transcription. These findings demonstrate that IDO1 facilitates GBM progression by inhibiting SLC7A11-dependent ferroptosis through an IDO1-AhR-FTO axis-mediated m6A methylation mechanism.
    • Book : 11(1)
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Abstract Downward longwave irradiance DLF is one of the main components of the surface radiation balance (SRB), but its direct measurement is currently limited. Clouds modulate its behavior, and clear-sky DLF0 is predominant in composition of the final DLF value. It is shown that in mid-latitude and tropical atmospheres, DLF0 can be represented as the sum of fluxes from three distinct spectral regions: R1 (λ < 7.5 µm), R2 (7.5 to 14 µm), and R3 (λ > 14 µm). R1 and R3 are closely described by blackbody radiation at screen temperature (Tscr), while R2 exhibits a mean emissivity that primarily depends on total precipitable water (w). It is presented a simple yet consistent physically-based model (hereafter denoted by OLD0), suitable for estimation of DLF0 at ground level. Validation of OLD0 with ground-based data of a worldwide set of 21 stations shows fair accuracy with bias MBE lower than 6 W.m-2 and spread (standard deviation STD) lower than 12 W.m-2 for typical values DLF0 ~ 300-400 W.m-2, compatible with surface pyrgeometer measures. The proposed algorithm outperforms existing methods, achieving a mean bias error (in module |MBE|) of approximately 2.8 W.m-2. In contrast, other widely used algorithms typically exhibit |MBEs| ranging from 8.1 to 15.9 W.m-2.
    • Book : 40()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page : pp.1-3
    • Keyword :
  • 2025

    In this paper, the numerical and analytical treatment for  the heat irreversibility of thermal radiation and Ohmic heating on Williamson fluid problem is investigated with various physical parameters and  the new initial conditions which poses arbitrary constants. The governing equations are transformed into dimensionless formulas, the ordinary differential equations obtained are then solved  using the BVP4c and  the differential transform method (DTM) . The heat irreversibility analysis is achieved by substituting the obtained results into entropy generation and Bejan number expressions. The results of  numerical and analytical solutions for various parameters are compared. Fluid motion is reduced by the increasing values of thermal radiation parameter, the magnetic parameter and Reynolds number.  In addition, every flow parameter investigated increases fluid temperature exception  thermal radiation parameter.  Entropy generation is also improved at the upper wall of the channel.
    • Book : ()
    • Pub. Date : 2025
    • Page : pp.293-316
    • Keyword :
  • 2025

    The second law of thermodynamics investigates the quality of energy, or in other words exergy, described as the maximum useful to the dead-state work. The objective of this paper is to investigate the energy and exergy flows in a crop plant system in order to identify the dominant flows and parameters (e.g., temperature) affecting crop plant development. The need for energy and exergy analyses arises from the hypothesis that crop stress can be detected via surface temperature measurements, as explained by the exergy destruction principle (EDP). Based on the proposed energy model, it is observed that radiation and transpiration terms govern all other terms. In addition, as a result of exergy analysis, it is observed that solar exergy governs all input and output terms. The results obtained from this study support the hypothesis that crop surface temperature can be utilized as an indicator to detect crop stress.
    • Book : 5(1)
    • Pub. Date : 2025
    • Page : pp.3-3
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :