본문 바로가기

Report

All 3,276,462 Page 3/327,647

검색
  • 2025

    Abstract Background Cutaneous hypertrophic scar is a fibro-proliferative hard-curing disease. Recent studies have proved that antagonists of angiotensin II type 1 receptor (AT1R) and agonists of type 2 receptor (AT2R) were able to relieve hypertrophic scar. Therefore, establishing new methods to pursue dual-target lead compounds from Chinese herbs is in much demand for treating scar. Methods To this end, we immobilized AT1R or AT2R onto the surface of silica gel from cell lysates through a specific covalent bond by bioorthogonal chemistry. The columns containing immobilized AT1R or AT2R were jointly utilized to pursue potential bioactive compounds simultaneously binding to AT1R and AT2R from the extract of Rhei Radix et Rhizoma. Their functions on AT1R and AT2R expressions were investigated by in vitro and in vivo experiments. Results Aloe-emodin and emodin were identified as the potential bioactive compounds binding to both of the two receptors, thereby improving the appearance and pathomorphology of hypertrophic scar. They blocked the AT1R pathway to down-regulate the expression of transforming growth factor-β1 (TGF-β1) and stimulate matrix metalloproteinase-1 (MMP-1) expression. As such, the expression of collagen I/III reduced. Conversely, the bindings of the two compounds to AT2R reduced the production of nuclear factor-кB1 (NF-кB1), whereby the generation of interleukin-6 (IL-6) was blocked. Conclusion We reasoned that aloe-emodin and emodin had the potential to become dual-target candidates against hypertrophic scar through the regulation of AT1R and AT2R signaling pathways. It showed considerable potential to become a universal strategy for pursuing multi-target bioactive compounds from Chinese herbs by the utilization of diverse immobilized receptors in a desired order.
    • Book : 20(1)
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Porcine circovirus type 2 (PCV2) is a significant pathogen responsible for porcine circovirus-associated diseases (PCVAD), and it is widely prevalent in pig farms, leading to huge economic losses for the pig industry. Currently, the ability of PCV2 to enhance its own replication by using the antiviral inflammatory factors IFNα, IFNβ, and IL-2 and its complex immune escape mechanism remain unclear, which has attracted wide attention. Research has indicated that GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) is involved in the innate immune response to a variety of viruses, primarily by regulating and composing stress granules (SGs) to inhibit viral replication. Our initial studies identified elevated G3BP1 expression during PCV2 infection, paradoxically promoting PCV2 replication. In light of this phenomenon, this study aims to elucidate how PCV2 regulates G3BP1 to enhance its replication. Our findings demonstrate that G3BP1 overexpression further activates PCV2-induced expression of RIG-I, MDA5, cGAS and STING, thereby promoting IFNβ production and affecting cell cycle arrest in the S phase, facilitating PCV2 replication. Moreover, interactions were observed between PCV2 Cap protein and G3BP1’s RGG domain, and between PCV2 Rep protein and G3BP1’s NTF2 and RRM domains, potentially promoting viral protein nuclear transfer. In summary, PCV2 enhances its replication by modulating G3BP1 to induce IFNβ production and directly binds viral proteins to promote viral protein nuclear transfer. This research provides a foundation for further investigation into the immune evasion mechanisms of PCV2.
    • Book : 26(3)
    • Pub. Date : 2025
    • Page : pp.1083-1083
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    AbstractCoupled‐cavity mini‐array vertical‐cavity surface‐emitting lasers (VCSELs) are promising laser sources for high‐speed data transmission due to their extended intensity modulation frequencies. Here, it is demonstrated for the first time how to use such a 2 × 1 mini‐array VCSEL for the photonic generation of CW THz radiation. The emission frequencies of the cavities are tuned via current and provide the beat frequency for the photoconductive antennae. With coherent lock‐in detection we measured frequencies up to 300 GHz, making the mini‐array VCSEL an extremely simple and low‐cost alternative laser source for frequency‐modulated continuous‐wave radar or spectroscopy systems.
    • Book : 61(1)
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : 14(1)
    • Pub. Date : 2025
    • Page : pp.1-15
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    The relativistic jets of gamma-ray bursts (GRBs) might be powered by a black-hole (BH) hyperaccretion system. The inherent asymmetry in these jets generates recoil forces, inducing oscillations and positional deviations of the BH from equilibrium. In this study, we explore the influence of different initial BH mass, spin, and mass accretion rate, as well as their evolutions on the dynamical properties of BH under the effect of asymmetric jets. Our results reveal that the initial mass and accretion rate significantly impact the BH’s acceleration, velocity, and displacement, while the different initial spin plays a negligible role in shaping the overall dynamical evolution. Additionally, we calculate the gravitational wave (GW) strains associated with the asymmetric jets, finding that the resulting GW signals are too weak to be detected, even for nearby GRBs. These findings provide critical insights into the dynamical response of BHs to asymmetric jets and the associated GW radiation, advancing our understanding of BH physics in GRBs.
    • Book : 11(2)
    • Pub. Date : 2025
    • Page : pp.43-43
    • Keyword :
  • 2025

    AbstractBackgroundSteatotic liver disease (SLD) is a potentially reversible condition but often goes unnoticed with the risk for end‐stage liver disease.PurposeTo opportunistically estimate SLD on lung screening chest computed tomography (CT) and investigate its prognostic value in heavy smokers participating in the National Lung Screening Trial (NLST).Material and methodsWe used a deep learning model to segment the liver on non‐contrast‐enhanced chest CT scans of 19,774 NLST participants (age 61.4 ± 5.0 years; 41.2% female) at baseline and on the 1‐year follow‐up scan if no cancer was detected. SLD was defined as hepatic fat fraction (HFF) ≥5% derived from Hounsfield unit measures of the segmented liver. Participants with SLD were categorized as lean (body mass index [BMI] < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2). The primary outcome was all‐cause mortality. Cox proportional hazard regression assessed the association between (1) SLD and mortality at baseline and (2) the association between a change in HFF and mortality within 1 year.ResultsThere were 5.1% (1000/19,760) all‐cause deaths over a median follow‐up of 6 (range, 0.8–6) years. At baseline, SLD was associated with increased mortality in lean but not in overweight/obese participants as compared to participants without SLD (hazard ratio [HR] adjusted for risk factors: 1.93 [95% confidence interval 1.52–2.45]; p = 0.001). Individuals with an increase in HFF within 1 year had a significantly worse outcome than participants with stable HFF (HR adjusted for risk factors: 1.29 [1.01–1.65]; p = 0.04).ConclusionSLD is an independent predictor for long‐term mortality in heavy smokers beyond known clinical risk factors.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Di-isopropyl methyl phosphonate (DIMP) has no major commercial uses but is a by-product or a precursor in the synthesis of the nerve agent sarin (GB). Also, DIMP is utilized as a simulant compound for the chemical warfare agents sarin and soman in order to test and calibrate sensitive IMS instrumentation that warns against the deadly chemical weapons. DIMP was measured from 2 ppbv (15 μg m−3) to 500 ppbv in the air using a pocket-held ToF ion mobility spectrometer, model LCD-3.2E, with a non-radioactive ionization source and ammonia doping in positive ion mode. Excellent sensitivity (LoD of 0.24 ppbv and LoQ of 0.80 ppbv) was noticed; the linear response was up to 10 ppbv, while saturation occurred at >500 ppbv. DIMP identification by IMS relies on the formation of two distinct peaks: the monomer M·NH4+, with a reduced ion mobility K0 = 1.41 cm2 V−1 s−1, and the dimer M2·NH4+, with K0 = 1.04 cm2 V−1 s−1 (where M is the DIMP molecule); positive reactant ions (Pos RIP) have K0 = 2.31 cm2 V−1 s−1. Quantification of DIMP at trace levels was also achieved by GC-MS over the concentration range of 1.5 to 150 μg mL−1; using a capillary column (30 m × 0.25 mm × 0.25 μm) with a TG-5 SilMS stationary phase and temperature programming from 60 to 110 °C, DIMP retention time (RT) was ca. 8.5 min. The lowest amount of DIMP measured by GC-MS was 1.5 ng, with an LoD of 0.21 μg mL−1 and an LoQ of 0.62 μg mL−1 DIMP. Our results demonstrate that these methods provide robust tools for both on-site and off-site detection and quantification of DIMP at trace levels, a finding which has significant implications for forensic investigations of chemical agent use and for environmental monitoring of contamination by organophosphorus compounds.
    • Book : 13(2)
    • Pub. Date : 2025
    • Page : pp.102-102
    • Keyword :