본문 바로가기

Report

All 708 Page 8/71

검색
  • 638

    2007.09.28

    재생 에너지에 대한 국제적 관심이 고조되고 있는데, 과연 이들 신흥 에너지가 기존 에너지를 대체할 만큼 가치가 있는 것일까? 이 질문에 대답하는 것은 어려운 일이지만, 적어도 재생 에너지에 대한 세계적인 투자가 이뤄지는 것은 사실인 것 같다.

    지난 18개월 동안 재생에너지 분야에 대한 투자가 급증하고 있으며, 이러한 시장의 움직임으로 청정에너지를 통해 전세계 전기생산의 1/4을 2030년까지 공급할 수 있는 가능성이 증가하고 있다고 <유엔 환경프로그램(UN Environmental Programme, Unep)>의 보고서가 주장하였다. 2006년 한 해 동안 풍력과 태양열 발전 및 바이오연료 분야에 350억 파운드 이상이 투자되었으며, 금년에는 43% 이상 증가할 것으로 보고 있다. 신흥 에너지는 현재 총 에너지생산의 2% 정도를 차지하고 있을 뿐이다. 하지만 유엔은 현재 재생에너지 분야에서 18%의 발전소가 건설되고 있다고 밝혔다. 그러나, 재생 가능 에너지의 부작용에 대한 논란도 끊이지 않는다.

    최근 에너지 정책적으로 볼 때, 미국과 비슷한 도전에 직면해 있는 다른 나라들을 위한 가장 현명한 에너지 정책은 대규모로 집중화된 석탄과 원자력 발전소에 대한 의존도에서 벗어나 대신 재생 가능 에너지원과 소규모 비 집중화된 발전 기술에 의존하는 것이라는 주장이 제기되었다. 이는 버지니아 공대의 벤자민 소바쿨의 결론으로서, 그에 의하면 이러한 대안 기술들은 동시에 가격 적정하고 친환경적이며 안전하다. 그는 최근 “정책 과학” 지에 낸 논문에서 이와 같은 주장을 내놓았다.

    현재 전기 분야는 자연 재해, 가격 변동, 테러리스트의 공격 등에 쉽게 영향 받는다. 오염 증대, 위협의 증가와 전송 분배 네트워크의 비효율성과 같은 장기적인 문제들과 연결되어 이러한 도전들은 대안적인 에너지 기술에 대한 평가를 더욱 필요로 하게 만든다.

    그의 연구는 현재의 미국 전기 산업이 직면한 도전들, 현재 기술적 구성을 자세히 분석하였다. 그는 미국 전기 정책 입안자들에게 이용 가능한 에너지 기술을 크게 다섯 범주로 나누어 평가했다. 이 다섯 범주는 기술적 가능성, 비용, 부정적인 영향(환경이나 인간 건강에 대한), 신뢰성과 안보 등이다.

    소바쿨의 자세한 분석은 에너지 효율 정책, 재생 가능 에너지 시스템(태양광, 풍력 그리고 수력에서 나오는 전력), 소규모 분산된 발전 기술 (소비 시점에 있어서 비집중화된 발전기술) 등이 대규모의 집중화된 원자력과 화석 연료 발전보다 더 많은 이점을 제공하고 있음을 보였다.

    그의 논문은 어떻게 이들 대안 에너지가 정책 입안자들에게 전기 수요를 맞추고 연료 중단의 위험을 최소화하며 교통 네트워크를 향상시키고 환경에 미치는 위해를 줄이는 해결책을 제시하는지 설명한다. 그는 “맘모스나 자본 집중적인 원자력 및 화석 연료 발전소가 아니라 미니 발전기들이 경쟁적인 에너지 환경에서 전력 생산을 다양화하는데 최선의 해결책을 제시한다”고 결론지었다.

    그의 논문은 1. Sovacool BK (2007). Coal and nuclear technologies: creating a false dichotomy for American energy policy. Policy Sciences; 40:101-122 (DOI 10.1007/s11077-007-9038-7).로 발표되었다.

    * yesKISTI 참조


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 637

    2007.12.17

    에너지 분야는 물론, 인류의 삶의 질 향상에 폭넓게 기여할 수 있는 원자력의 역할을 고민하고, 국제적인 협력 강화 방안을 모색하기 위한아시아지역 원자력협력포럼이 일본에서 열린다.

    과학기술부는 정윤 차관을 수석대표로 12월 17~18일 일본 동경에서 개최되는 제8차 아시아원자력협력포럼(FNCA;Forum for Nuclear Cooperaton in Asia) 총회에 참석한다고 밝혔다.

    아시아원자력협력포럼(FNCA)는 한국, 중국, 일본, 호주, 베트남, 인도네시아, 태국, 필리핀, 방글라데시 등 10개 회원국이 참여하는 협력체로 매년 2차례 국가조정관회의와 총회를 개최해오고 있다.

    금번 총회에는 기시다(KISHIDA) 일본 내각부 과학기술특명장관, 순친(SUN Qin) 중국 국가원자능기구 주임, Dato' Kong Cho Ha 말레이시아 과학기술혁신부장관 등 10개 회원국의 각료급 인사가 참여한다.

    한국측 수석대표인 과학기술부 정윤 차관은 기조연설(Country Report)에서 지구 온난화 방지와 에너지 고갈문제 해결은 물론, 농학·의학적 이용 등을 통해 삶의 질을 향상에 기여할 수 있는 원자력의 역할과 아시아지역에서 원자력 협력 필요성을 강조할 예정이다.

    정윤 차관은 금년 1월에 수립한 『제3차 원자력진흥종합계획('07~'11)』, 경주 중·저준위 방사성폐기물 선정, 고리 1호기 계속운전 결정과 차세대혁신형 원자력개발 프로그램(INPRO), 제4세대 원자로개발을 위한 국제포럼(GIF) 등 국제 공동연구 및 세계 원자력파트너십(GNEP) 원칙선언서(SOP) 서명 등 한국 원자력의 국제활동 내용을 소개하게 된다.

    아울러, 원자력의 평화적이고 안전한 이용에 대한 중요성을 강조하면서, 한국정부가 세계 원자력안전 향상에 기여하기 위해 『국제원자력안전학교』 설립을 추진하고 있음을 역설하며, 이 과정에서 한국정부가 얻은 소중한 경험들을 FNCA회원국들과 공유하고 협력할 의지가 있음을 천명하고자 한다.

    정윤차관은 FNCA가 회원국간의 원자력협력과 공동연구 등을 통해 아시아 지역의 원자력발전을 증진하는데 기여해왔다고 평가하며, 원자력이 에너지 문제를 해결하고 환경을 보존하며 삶의 질을 향상시키는 역할을 할 수 있도록 FNCA 회원국의 공동노력을 촉구할 것이다.

    과학기술부는 금번 제8차 FNCA 참가를 통해 최근 전 세계적으로 일고 있는 원자력의 새로운 도약기를 맞이하여  우리나라의 원자력 정책 및 활동을 소개하고, FNCA 회원국과의 협력의지를 천명하여, 인니, 베트남 등 신규원전 건설을 검토하고 있는 국가들에 우리나라 원자력 발전 기자재 및 방사성 장비 등의 수출 가능성을 제고하는 성과를 거둘 것으로 기대된다.

    한편, 한국대표단은 12.17(월)에는 아오모리 로카쇼무라 재처리시설을 시찰하고 일본의 사용후핵연료 저장, 재처리 시설 등의 건설·운영 등에 관한 경험을 공유하여 향후 한국의 방사성폐기물 처분시설 건설·운영 및 사용후핵연료 정책수립 등에 활용할 예정이다.

    정윤 과학기술부차관은 12.18(화)에는 제니야 마사미(Jeniya MASAMI) 일본 문부과학성 차관과의 회담을 통해 '06년 한·일 과학기술장관회담의 합의사항 이행 및 핵융합, 원자력, 우주 분야 등에서 양국간 협력 확대 방안을 논의할 예정이다.

     


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 636

    2019.10.07

    CNNC(China National Nuclear Corporation)는 자체설계한 HPR1000(Hualong One) 가압경수로용  CF3(China Fuel 3) 핵연료집합체를 양산하기 시작했다. CF3 핵연료의 장기 조사시험(long-term irradiation testing)은 올 3월 완료된 바 있다.

    2014년 7월 중국이 자체설계한 CNP-600 PWR형 원전인 Qinshan II 2호기에 CF3 핵연료집합체 4다발이 장전되었다. CNNC는 노심주기가 바뀔 때마다 핵연료집합체를 꺼내 검사를 수행했다고 밝혔다. 검사결과는 핵연료의 설계성능이 국제적으로 인정된 표준을 충족한다는 것을 입증한 것으로 전해졌다. 올 5월 CNNC는 이 핵연료의 상업생산을 시작할 준비가 되어 있다고 밝힌 바 있다.

    CNNC는 9월 20일 Qinshan 원전에서 4다발의 핵연료집합체에 대한 추가시험이 끝났다고 발표했다. 이미 Fangjiashan 원전에서 8다발의 CF3 핵연료집합체 연료시험을 조사했으며 올해 말에 8다발의 집합체를 Qinshan 원전에 장전할 예정이다.

    CNNC는 여러 원자력발전소에서 연소시험을 통해 CF3 핵연료집합체를 광범위하게 사용할 수 있어 제품 연구비 절감이 가능하다고 밝혔다. CF3 핵연료집합체는 장주기 노심에 사용할 수 있으며  Hualong One 원전과 Yanlong 저온냉방용원자로(low-temperature heating reactor)에 적합하다고 밝혔다.

    CNNC는 2018년 9월 지역난방용 Yanlong 수조형(pool-type) 저온로 예비설계를 완료했다. 400 MWt의 출력인 이 원자로가 상온과 대기압 하에서 작동할 수 있다고 밝혔다. 핵연료 용융위험이 없고 방사능 배출량이 적어 도시 인근에 건설할 수 있는 것이 특징이다. CNNC는 고성능 핵연료를 개발하는데 필요한 모든 기술을 보유하고 있으며 독립적인 핵연료 시스템과 충분한 핵연료 공급능력을 갖추고 있어 국제시장에서도 경쟁력을 갖고 있다고 밝혔다.

    CF3 핵연료집합체는 17x17 지지격자 내에 배열된 264개의 핵연료봉으로 구성된다. 각 연료봉에는 이산화우라늄(uranium dioxide) 또는 산화가돌리늄(gadolinium oxide)과 이산화우라늄이 혼합된 펠릿(pellet)이 들어있다. 핵연료봉은 zircalloy 피복재를 사용한다. 총 177 다발의 CF3 핵연료집합체가 Hualong One 원자로 노심에 장전된다.

    Hualong One 원자로는 현재 Fuqing 및 Fangchenggang 부지에 건설 중이다. Fuqing 5, 6호기는 Fangchenggang 3, 4호기와 마찬가지로 2019년과 2020년에 본격적인 건설이 시작될 것으로 예상된다. 국제 원자력시장에서 Hualong One 원자로는 HPR1000으로 불리며 이 중 2기는 파키스탄 Karachi 부지에 건설 중이다.

    2019년 9월 11일 CNNC는 최초의 Hualong One 시범원전용 핵연료 부품이 공장인수검사를 통과하여 Fuqing 원자력발전소로 이송되었다고 밝혔다. 한편, CNNC는 Sichuan성 Yibin에 있는 PWR용 핵연료 제조공장에서 카자흐스탄 Ulba 야금공장에서 만든 핵연료 펠릿을 이용해 CF3 핵연료 집합체를 생산하고 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 장기 조사시험,저온냉방용원자로,장주기 노심 2. long-term irradiation testing,low-temperature heating reactor,long-cycle refueling
  • 635

    2020.11.10

    러시아 국립 원자핵연구 대학(National Research Nuclear University MEPhI), 영국 사우샘프턴 대학(University of Southampton)의 연구진은 1차원 다공성 실리콘 광자결정 속의 반도체 양자점의 자발 방출 속도와 강도를 증가할 수 있다는 것을 증명했다. 이 연구결과는 양자 컴퓨터를 만드는데 필요한 핵심 문제 중의 하나를 해결하고 생의학 모니터링을 새로운 수준으로 끌어 올리는데 도움을 줄 수 있을 것이다.

    양자점은 빛과 물질이 상호작용할 수 있는 저차원 형광 나노구조체이다. 양자점은 나노결정의 크기에 따라서 넓은 파장 범위의 빛을 흡수하고 좁은 파장 범위의 빛을 방출할 수 있다. 즉, 한 개의 양자점은 각각의 특정 색상으로 빛난다. 이런 특성들은 양자점이 조명 장치, 태양광 패널, 양자 계산을 위한 큐비트까지 다양한 분야에 사용될 수 있다. 또한 광 안정성과 밝기 측면에서 기존 형광체보다 우수하다. 따라서 양자점 디스플레이는 다른 기술에 비해 훨씬 더 높은 밝기, 색상 대비, 낮은 전력 소비 등을 제공할 수 있다.

    이번 연구진은 다공성 실리콘 기반의 광자 구조에서 반도체 양자점의 방출 속도와 강도를 모두 증가시킬 수 있다는 것을 최초로 입증했다. 이것은 다공성 기질에서 형광체의 국소적인 전자기 환경을 변경시킴으로써 자발적인 발광을 제어하는데 새로운 방법을 제공한다. 또한 이 연구결과는 바이오 감지, 광전자 공학, 암호화, 양자 컴퓨터 등의 다양한 분야에 유용하게 적용될 수 있을 것이다.

    이 연구는 광자결정의 산화를 사용했다. 광자결정의 산화는 발광 소멸을 억제하고 흡수를 위한 에너지 손실을 감소시켰다. 이러한 구조의 발광을 향상시키기 위해 다양한 방법이 사용되었고, 그 중에서 광자결정을 사용하는 것이 특히 중요했다. 광자결정 굴절률의 주기적인 변화를 통해 광자 상태 밀도(photonic states density)의 국부적인 증가를 달성할 수 있었다. 광자결정을 제조하기 위해 다공성 실리콘이 사용되었고, 이 소재는 굴절률을 정확하게 제어할 수 있고 제조가 용이하며 흡착능력이 뛰어났다.

    이 연구결과는 광 컴퓨터 또는 암호화 시스템을 개발하는데 큰 역할을 할 것이다. 이 시스템을 사용하면 현재는 거의 불가능한 단일 또는 양자 얽힌 광자의 주문형 생산이 가능해진다. 얽힌 광자는 현대 물리학에서 중요한 역할을 한다. 얽힌 쌍이 없으면 양자 통신 및 양자 순간 이동을 수행할 수 없고 양자 인터넷으로 연결된 양자 컴퓨터를 구축하는 것이 거의 불가능하다. 양자 컴퓨터가 만들어지면 분자 모델링, 암호화, 인공 지능 등의 모든 영역에서 큰 변혁이 올 것이다.

    이 새로운 시스템은 효소-결합 면역 흡착 측정(enzyme-linked immunosorbent assay)을 위한 소형 형광 바이오센서용으로 사용될 수 있다. 광자결정 증가 형광(photonic crystal enhanced fluorescence)을 가진 양자점을 사용함으로써 분석 감도를 크게 향상시켜서 조기 질병 감지가 가능하고, 환자 치료용 모니터링을 용이하게 한다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 반도체; 양자점; 광자결정 2. semiconductor; quantum dot; photonic crystal
  • 634

    2017.11.28

    알츠하이머병을 가진 환자들의 뇌는 신경세포 안에 특징적인 응집체들을 가진다. 이들 덩어리들은 Tau 라고 불리는 단백질들이 꼬인 섬유모양으로 응집할 때 형성된다. 그 결과 신경세포의 수송 체계가 붕괴되고 필수 영양소들이 이동할 수 없어서, 세포들이 죽기 시작하고, 뇌 기능에 영향을 주고 그 질병의 증상들이 나타나게 된다. 과학자들이 세포막과의 상호작용으로 형성되는 Tau의 새로운 독성 형태를 발견했다.

    알츠하이머병의 병리학에서 그 역할을 고려해서, Tau 단백질은 광범위하게 조사되어왔다. 아밀로이드를 표적으로 한 치료법들의 여러 임상 시험이 최근에 실패하면서,   Tau는 알츠하이머병을 위해서 가장 활발하게 추적하고 있는 표적들 중의 하나가 되었다. 그러나 Tau가 어떻게 뇌에 퍼지고 신경세포들을 죽이는지에 대해서는 여전히 의문이 남아있다. 세포막이 Tau의 응집성과 생리학적인 기능들을 조절하는데 역할을 하는 것으로 알려졌지만, 우리는 여전히 Tau와 지질막 사이의 상호작용이 어떻게 알츠하이머병에서 보이는 신경세포의 손실로 이어질 수 있는지를 이해하지 못하고 있다.

    이제 과학자들이 개별적인 Tau  단백질들이 신경세포의 세포막과 상호작용하고 이를 교란시킨다는 것을 발견했다. 이 교란으로 막의 지방 분자들(phospholipids)뿐만 아니라 여러 Tau 단백질들로 이루어진 매우 안정적인 복잡체가 형성된다. 뒤이어 이루어진 연구들은 그 단백질/인지질 복합체들이 그 단백질의 섬유 형태에 비해서 해마 신경세포들에 의해서 더 쉽게 흡수돼서 시험관에서 의 주요 신경세포들에 독성을 유도한다는 것을 보였다. 해마는 기억이 처리되는 곳으로 해마 신경세포의 손실은 알츠하이머병의 전형적인 증상이다.  Tau의 병리학적인 형태를 감지하는데 표준으로 사용되는 항체(MC-1)을 가지고 그 복합체들을 감지했는데, 이는 그것들이 그 단백질의 병리학적인 형태에 몇 가지 특징들을 공유한다는 것을 의미한다.

    핵자기공명(Nuclear Magnetic Resonance (NMR))에 의해서 그 복합체의 핵에 있는 Tau의 구조를 밝혔는데, 그 핵은 각각 6개의 잔기들을 가진 두 개의 짧은 펩티드로 이루어졌다. PHF6*와 PHF6로 불리는 이들 펩티드들은 Tau 응집과 조립체를 섬유상으로 유도하는데 중요한 역할을 한다. 그 존재는 그 단백질/인지질 복합체를 알츠하이머병의 발달과 연관시킨다.

    그 발견은 Tau 단백질/인지질 복합체의 새로운 형태를 보여주는데, 이는 Tau 구조, 올리고머화, 독성, 그리고 아마도 신경세포들 사이의  정상적/비정상적 수송을 조절하는 막-의존적인 기전의 일부일 수도 있다. 이 복합체를 감지하고, 교란시키거나 표적으로 하는 도구를 개발함으로써, 알츠하이머병의 뇌에서 Tau 응집, 독성, 병리학이 퍼지는 것을 억제하는 새로운 전략을 세울 수 있을 것이다.

    그 연구는 이 단백질이 뇌에서 이동하고 신경세포들을 죽이는 가능한 기전에 대한 새로운 통찰을 제공한다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. 알츠하이머병; Tau 단백질; 응집; 지질막; 단백질 인지질 복합체 2. Tau protein; aggregation; tau protein phospholipid complex; Alzheimer's disease ; tangles ; PHF6
  • 633

    2010.05.20

    미국, 원자력 에너지 R&D 로드맵

     

    에너지 안보 및 온실가스 배출량 감축의 목적을 달성하기 위해, 미국은 가능한 빨리 저렴한 국내 청정에너지원을 개발하고 전개해야 한다. 원자력은 미국의 에너지 목표에 부응하는 기술 포트폴리오의 주요 요소가 될 것이다. 이 보고서는 원자력 에너지를 미국의 지속적인 에너지원으로 확보하기 위한, 에너지부 원자력국(Office of Nuclear Energy)의 연구, 개발 및 시범 활동 로드맵을 제공한다. 

     

    오늘날, 원자력 에너지 사용의 확대와 관련한 국내외적 주요 과제는 다음과 같다.

       • 대규모 신규 발전소의 자본 비용이 높으며, 이는 전기 사업자들이 신규 원자력 발전소를 설립하는데 걸림돌이 될 수 있다.    

     

       • 지난 30년간 미국 원자력산업의 모범적인 안전 성과는 원자로가 확대되면서 계속 유지되어야 한다.   

     

       • 현재 고준위 핵폐기물의 관리에 대한 통합된 영구적 해결책이 없다.  

     

       • 원자력 에너지의 사용이 국제적으로 확대되면, 특별한 핵 물질 및 기술의 접근으로 인한 핵무기 확산의 우려가 제기된다.

     

    위의 과제들을 극복하는데 있어서, 연방정부의 적합한 역할이 필요한 경우도 있다. 연방정부의 역할은 원자력을 미국의 에너지 공급, 환경 및 에너지 안보 요구사항에 부응하는 자원으로 발전시키려는 원자력국의 주요 목표와 일치해야 한다. 이를 달성하기 위해서는, 적합한 연구, 개발 및 시범을 통해 기술, 비용, 안전성, 안보, 핵확산 저항 장애물 등을 해결해야 한다. 원자력국의 R&D 활동은 위의 과제들을 해결하는 것을 지원함으로써, 새로운 원자로 기술의 전개를 가능하게 하고 신규 원자로의 건설을 촉진할 것이다.     

     

    R&D 목적

    원자력국은 원자력의 사용 확대와 관련한 문제들을 해결하기 위한 다음의 4가지 주요 R&D 목적에 따라 R&D 활동을 수립한다.

     

       (1) 현재 원자로의 신뢰성을 개선하고, 안전성을 유지하며, 수명을 연장할 수 있는 기술 및 기타 해결책을 개발한다.

       (2) 원자력 에너지가 행정부의 에너지 안보 및 기후변화 목표를 달성하는데 도움이 되도록, 신규 원자로의 비용을 개선한다.

       (3) 지속가능한 원자력 연료 주기를 개발한다.   

       (4) 핵 확산 및 테러의 위험을 파악하고 최소화한다.

     

    R&D 접근

    새로운 기술을 조사하고 전환적 발전을 추구하면서 위의 R&D 목적을 달성하려면, 목표위주의 과학기반 접근이 필요하다. 과학기반 접근은 이론, 실험, 고성능 모델링 및 시뮬레이션을 결합하여, 근본적인 이해를 증진함으로써 새로운 기술을 개발한다. 과학기반 R&D를 수행하는 과정에서, 인프라 요구사항은 계획 수립과 예산 편성 과정을 통해 평가되고 고려된다. 미국의 효과적인 R&D를 위하여, 다자간 또는 양자간 협정(4세대 원자력시스템 국제포럼 등)을 통해 다른 국가들과 협력한다.

     

     

    목차

    1. 서론

    2. 배경

    3. 에너지부 원자력국의 목표

    4. 원자력 에너지의 통합 로드맵

    5. R&D 접근

    6. 요약 및 결론
    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 632

    2019.05.04

    노르웨이 에너지기술연구소(IFE, Institute for Energy Technology) 이사회는 2019년 4월 25일 Kjeller에 있는 JEEP-II 연구용원자로의 가동을 영구 중단하기로 결정했다. 올해 초 IFE는 조사 결과 노르웨이의 마지막 원자로인 JEEP-II를 계속 가동하기 위해서는 "광범위하고 돈이 많이 드는 개선"이 필요한 것으로 나타났다고 밝힌 바 있다.

    북유럽 국가에서 유일한 중성자 산란시설인 JEEP-II 연구로는 물리 및 재료 기술에 대한 기초연구를 위한 노르웨이 국가 연구인프라 NcNeutron의 일부다. NcNeutron 참여기관에는 Oslo 대학, Stavanger 대학, 노르웨이 과학기술 대학, 독립 연구 기관인 SINTEF 등이 있다. JEEP-II는 2023년 완공예정인 스웨덴 Lund의 유럽 핵파쇄선원연구센터(European Spallation Source research centre) 개발 및 건설에 노르웨이가 기여하는데 큰 역할을 했다.

    JEEP-II는 2018년 12월에 예정된 유지보수 및 검사를 위해 운전을 중지한 바 있다. 그러나 올 1월 말 IFE는 안전에 중요한 원자로 부품에서 부식이 발견됨에 따라 2019년 2월 7일로 예정되어 있던 JEEP-II의 재시동을 연기했다. 당시 연구소는 1월 말까지 검사가 계속될 것이며 2월 중순에 보고서가 완성될 것이라고 말했다. 그러나 3월 11일 성명에서 조사 결과 연구용 원자로를 재가동하기 위해서는 "고비용의 개선"이 필요할 것으로 보인다고 밝혔었다.

    IFE와 외부 전문가들이 2019년 4월 25일 수리가 필요한 곳과 범위를 분석해 발표했다. 발표내용은 수리비용이 IFE의 재정능력을 초과하기 때문에 원자로를 장기간 정지해야 한다는 것이었다. 원자로는 현재 정지해 있으며 핵연료와 중수가 제거되어 있어 건강, 환경, 안전에 아무런 위험이 없다는 사실도 덧붙였다. IFE 측은 노르웨이 정부가 폐기물 관리와 폐로를 위한 기금을 부담하지만 수리 비용과 JEEP-II의 추가 운영 비용을 부담하는 것은 IFE의 책임이라고 밝혔다.

    Oslo에서 북동쪽으로 약 25km 떨어진 Kjeller 연구센터의 이 2,000 kWt급 원자로는 1967년 준공되었다. 목적은 중성자 물리학 기초연구, 의료 및 산업용 동위원소의 생산 그리고 방사선 조사서비스와 실험이다. 2018년 12월 IFE는 JEEP-II를 향후 10년 더 운영하기 위한 운영허가 갱신을 받은 바 있다. IFE는 JEEP II 원자로 폐쇄로 연구 부문이 위축될 것으로 예상했다.

    한편, IFE는 또한 Halden 핵연료와 재료시험용 원자로를 보유하고 있다. 이 프로젝트는 OECD NEA(Nuclear Energy Agency)의 후원으로 공동 자금지원 프로그램에 참여하는 19개국의 국가기관의 사업이었다. 노르웨이는 프로그램 비용의 약 30%를 부담해 왔다. 2018년 6월 IFE는 2020년에 만료될 예정이었던 원자로의 운영허가 연장을 추진하지 않겠다고 발표했다. 이로써 안전밸브 고장으로 인해 정지되어 있던 원자로는 재가동되지 않을 것이다. 이 프로그램은 1959년에 시작된 바 있다.


    • 저자 : KISTI 미리안 글로벌동향브리핑
    • Keyword : 1. JEEP-II 연구용 원자로,Halden 핵연료 및 재료시험로,안전밸브 고장 2. JEEP-II research reactor,Halden nuclear fuel and materials testing reactor,safety valve failure
  • 631

    2007.02.13

    Ⅰ. 핵군축 촉진을 위한 시책

    1. 핵폐절결의
    - 1994년 이후 매년, 핵폐절 구체방안에 대한 핵폐절결의안을 국가연합총회에 제출하여 압도적인 지지로 채택

    2. 포괄적인 핵실험금지조약(CTBT) 조기발효
    - 미국을 포함한 미비준국에 대한 적용활동, 국내관측시설정비 등

    3. 병기용 핵분열성 물질생산금지조약의 조기교섭개시
    - 군축회의에 일본 간부급대표 파견, 워크샵 개최, 군축회의에 작업문서제출 등

    Ⅱ. 기반정비를 위한 시책

    1. 일본국제문제연구소 군축불확산촉진센터
    - 군축정책실시체제확립을 위한 연구와 강좌개최, CTBT 국내운용체제정비 등

    2. 군축불확산교육
    - 군축교육가초빙 및 군축교육세미나개최 등

    Ⅲ. 국제사회와 연계한 핵안전활동 시책

    1. 조약 등
    - 테러대책을 위한 국제시책에 대응하고 국가연합 등에서 채택된 13테러조약 가운데 이미 12조약을 체결하고 있다. 또한, 핵물질방호조약개정의 조기체결을 위한 준비작업을 진행하고 있다.

    2. 재정적인 공헌(IAEA 핵안전기금 거출)
    - 일본의 지불액은 총 687,189달러(2001~2006년도)이며, 카자흐스탄 울바 핵연료공장의 계량관리기술향상을 목적으로 ‘울바계획’ 등 실시

    3. 아웃리치 활동
    - 2006년 11월 8~9일 토쿄에서 아시아 국가를 대상으로 외무성과 IAEA가 공동으로 ‘아시아지역에서의 핵안전강화를 위한 국제회의’를 주최하였으며, 이는 아시아지역에서 핵안전을 테마로 개최한 최초의 국제회의였다.

    4. 국제이니셔티브에 참가
    - 미ㆍ러 양수상은 핵테러리즘 위협에 국제적으로 대항해 가고자 2006년 7월 15일 G8 서밋 당시 ‘핵테러리즘에 대항하기 위한 국제이니셔티브’를 제창하였다. 또한, 2006년 10월 30일, 모로코에서 차관급 제 1회의가 개최, G8, 호주, 중국, 카자흐스탄, 터키가 최초 참가국으로서 참가하여 ‘원칙에 관한 소명’을 채택하였으며, IAEA는 입회인으로서 참가하였고 동 소명채택 후 모로코도 참가를 표명하였다. 참고로 제 2회 회의는 2007년 2월 12~13일 터키에서 개최될 예정이다.  

    Ⅳ. 핵불확산을 위한 수출관리레짐

    1. 원자력공급국가그룹(NSG: Nuclear Suppliers Group)

    - 1974년 인도에서의 핵실험을 계기로 핵병기개발에 사용될 가능성이 있는 자기재ㆍ기술수출관리 틀로서 1978년 주요원자력공급국가에 의해 설립되었다.  NSG에서는 NSG가이드라인인 원자력관련자기재ㆍ기술수출국이 지켜야 할 지침을 바탕으로 수출관리가 실시되고 있는데, 동 지침은 원자력 전용품ㆍ기술이전에 관한 ‘NSG가이드라인ㆍ파트1’과 이라크 핵개발계획발각을 계기로 광범위한 품목을 대상으로 한 원자력범용품ㆍ기술이전에 관한 ‘NSG가이드라인ㆍ파트2’로 나뉜다.

    2004년 중국, 에스토니아, 리투아니아, 몰타 4개국, 2005년 6월 크로아티아 참가로 2007년 1월 현재 참가국은 일본을 포함한 45개국으로,  제 1회 총회 및 연 수차례 그룹회의를 개최하고 있다. 일본은 핵불확산체제강화 관점에서 원자력기자재ㆍ기술수출관리를 중시하면서 NSG에서의 논의에 적극적으로 참여하고 있는 중이다.


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 630

    2008.02.11

    미국 에너지부(DOE)의 2009년 예산안이 2008년에 비해 3.2% 증가한 260억 달러로 예상되고 있다.

    2009년 예산안의 특징은 석탄과 원자력 기술들의 대폭적인 증가와 바이오매스와 바이오정제의 연구 및 개발 분야의 증가로 나타난다. 그러나 에너지 효율과 재생에너지(Energy Efficiency and Renewable Energy, EERE) 프로그램에 대한 자금 지원은 28% 감소하여 12억 5천 6백만 달러로 책정되었다. 이는 수소 기술, 태양에너지, 자동차 기술, 설비, 인프라 구조 등의 감소에서 기인한다.

    화석 에너지 연구 및 개발 프로그램의 예산은 25% 증가하여 9억 9천 7백만 달러로 되었으며 이 중 대부분이 석탄 연구 자금으로서 41% 증가한 8억 1천 8백만 달러이다. 설정된 예산의 4억 달러는 연구 개발 자금이며 2억 4천 1백만 달러는 새롭게 조정된 탄소 수집 및 저장 프로그램을 통한 석탄 화력 발전 플랜트들을 위한 경제적인 탄소 수집 및 저장을 위한 기술 시연을 위해서 사용된다.

    새로운 원자력 플랜트들과 연구를 위해서 원자력 분야의 예산이 증가한다. 2억 4천 2백만 달러는 새로운 원자력 플랜트 기술들을 시장에 선보이고 제어 공정들을 시연하기 위한 ‘원자력 발전 2010(Nuclear Power 2010)’ 프로그램을 위해서 사용된다. 3억 2백만 달러는 혁신적인 변화와 분리 기술들의 연구와 개발을 위해서 사용될 것이다.

    에너지부 산하의 과학 분야 예산은 18% 증가한 47억 달러로 책정되었다. 생물 및 환경 분야의 연구를 위한 예산은 13.6% 증가한 5억 6천 8백만 달러이다. 관련 연구는 지구 기후 변화, 환경 개선, 방사능의 생물학적 영향에 대한 분자, 원자, 시스템 연구, 구조 생물학, 방사능 화학과 설비, DNA 배열 등이다. 이 프로그램은 탄소 저장과 관련된 과학 분야도 지원한다.

    바이오매스 및 바이오정제 시스템 분야의 연구 및 개발 분야의 예산은 8% 증가한 2억 2천 5백만 달러이다. 이 프로그램은 미래의 바이오정제 시스템들이 셀룰로오스계 바이오매스 연료들, 화학물질, 열, 전력 등을 지속 가능하고 경제적으로 전환시키는 것을 가능하게 만드는 새로운 기술들에 대한 연구, 개발, 기술 평가 등을 지원한다. 프로그램의 목표는 2012년까지 미국 내에서 이용 가능한 바이오매스 자원들을 사용하여 셀룰로오스계 에탄올을 경제적으로 생산하도록 도와주는 것이다.

    수소 분야의 예산은 31% 감소한 1억 4천 6백만 달러이다. 수소 기술 프로그램은 수소 생산, 저장, 이송, 연료전지 기술들을 개발하게 된다. 현재 연구는 수소 인프라구조와 연료전지 자동차가 2020년까지 상용화되도록 도와주는 것을 목표로 한다. 태양 에너지 분야는 7.1% 감소한 1억 5천 6백만 달러이다.

    자동차 기술 분야는 0.9% 감소하여 2억 2천 1백만 달러로 책정되었다. 자동차 기술 프로그램은 FreedomCAR, Fuel Partnership, 21st Century Truck Partnership 등으로 사용된다. 프로그램은 하이브리드, 플러그인 하이브리드, 연료전지 자동차 등을 위한 기술의 개발을 목적으로 한다. 또한 경량 물질, 전자 전력 제어 및 전자 모터, 차세대 에너지 저장 설비 등에 대한 지원도 이뤄진다.

     * yesKISTI 참조


    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :
  • 629

    2009.07.14

    본 문서는 로렌스 버클리 국립 연구소가 향후 3년 간의 검출기 R&D와 관련해 제안하였던 프로그램들을 요약한 것이다. 제일 먼저 센서와 전자공학 분야부터 소개하고, 이어 검출기 시스템을 소개하는 순으로 서술하였다. 본 문서에는 데이터 획득 및 연산 분야의 R&D 활동은 포함하지 않았다.

    그리고 본 문서는 연구소가 HEP(High Energy Physics) 검출기 R&D 프로그램의 대(大) 목표를 프로그램을 통해 어떻게 달성하면 좋을지 논하는 것으로 마무리 된다.

    독자는 아래의 내용을 읽기 전, LBNL(로렌스 버클리 국립 연구소)의 업적과 주요 역량 등에 관하여 적은 부속 문서를 먼저 읽는 것이 바람직하다.

    센서와 전자 공학

    동 분야에서 본 연구소가 기획한 프로그램은 다음과 같다:
    1) 암흑 에너지 과학과 기타 관측 천문학/천체 물리학 응용 등에 사용될 전하 결합 소자(CCD)
    2) CCD 제어와 정보 판독에 필요한 IC
    3) 단일 결정 활성 픽셀 센서
    4) 미래의 입자 추적기 전력 분배에 필요한 IC
    5) 미래의 실리콘 픽셀 검출기(혹은 다른 센서)의 정보 판독에 필요한 IC

    이 중, 1) 전하 결합 소자(CCD)에 관한 내용은 다음과 같다:

    MSL(MicroSystems Laboratory)  CCD를 제조하기 위하여 단기 암흑 에너지 실험 2개와, 암흑 에너지 연구(DES: Dark Energy Survey), 바이론 오실레이션 분광 분석 연구(BOSS) 등을 프로젝트 기금으로 직접 지원하고 있다. 본 연구소의 일반 검출기 R&D 프로그램에서는 보다 빠른 정보 판독(readout), 저 소음, 단일 광자 감지 능력, 저 비용 등을 타겟으로 CCD를 개발 중에 있다. 본 작업에 대한 미 에너지성(DOE)의 재정 지원은 LBNL LDRD(Laboratory Directed Research and Development)의 지원과 NNSA(National Nuclear Security Administration, 국가 핵안보국)의 보조금 등으로 확대되었다.

    검출기 시스템

    동 분야와 관련해 현재 연구소에서 운영하는 프로그램은 다음과 같다: 
    1) 미래의 대(大) 실리콘 추적기에 필요한 신 재료와 집적 구조 
    2) 미래의 0-ν ββ 실험 또는 WIMP 검출기에 필요한 고압 제논 TPC 
    3) 나노기술(나노와이어)을 사용해 미래의 픽셀 센서 비용 낮추기
    4) 픽셀 IC를 활용해 비 실리콘 정보 판독

    이 외에도, 0-ν ββ 실험 또는 WIMP 검출에 필요한 게르마늄 검출기 관련 R&D와, 암흑 물질 실험에 액상 제논 이용에 관한 R&D 등이 조만간 발달할 것으로 예상된다. 상세한 R&D 계획을 제시하는 것은 시기상조이지만, 이와 관련한 R&D 분야 한 두 곳에선 상세한 계획이 산출될 가능성이 있다.

    일반 검출기 R&D 프로그램

    미래의 유망한 일반 R&D 프로그램에 대한 가이드라인을 아래와 같이 제시한다:
    1. 동 분야에서 검출기와 관련해 도드라진 문제점을 파악하는 데 있어 좀 더 적극적이다.
    2. 연구계에서 이러한 문제점을 다룰 수 있게 도와 주어, 합치된 노력을 통해 미래의 검출기 소요 비용을 상당히 줄이거나 개선할 수 있게끔 물리학이 발달할 수 있게 한다.
    목차
    센서와 전자 공학
    1. 전하 결합 소자(CCD)
    2. CCD와 IC 전자 공학
    3. 단일 결정 활성 픽셀 센서
    4. DC-DC 변환
    5. 미래의 추적 검출기에 필요한 IC
    검출기 시스템
    일반 검출기 R&D 프로그램

    • 저자 : 글로벌 과학기술정책 정보서비스
    • Keyword :