□ 연구개발 목표 본 과제에서는 라그랑지안 기반의 원자로 열유체 및 다물리 해석코드(SOPHIA)를 개발하고, 고해상도 고온가스냉각로(HTGR) 실험데이터를 활용하여 이를 검증하고자 함. 이에 대한 세부목표는 다음과 같다. (1) 고온가스냉각로 사고 시 물리/화학 거동해석을 위한 라그랑지안 모델개발 및 구현. (2) SOPHIA 코드 내 고온가스냉각로 물리/화학 모델통합. (3) 고온가스냉각로 공기/증기유입 현상 고정밀/고해상도 실험데이터 획득. (4) 실험데이터를 통한 코드검증 및 모델개선. □ 연구개발 내용 원자로 안전과 관련하여 물리현상을 정확히 이해하고 해석하는 것은 무엇보다 중요하다. 특히 최근 컴퓨터 기술이 발전함에 따라 복잡한 물리현상을 보다 사실적으로 재현할 수 있는 기술들이 빠르게 발전하고 있다. 이 중 완화입자동역학(SPH)은 대표적인 라그랑지안 기반의 해석기법으로, 복잡한 형상 및 현상을 쉽고 정확히 다룰 수 있어 최근 여러 공학 분야에서 빠르게 발전하고 있다. 본 연구에서는 국내(서울대학교)에서 개발한 SPH 기반의 원자로 열유체 및 안전해석 코드인 SOPHIA 코드를 활용하여 고온가스냉각로의 사고 시 주요현상을 해석할 수 있는 코드를 확장하고, 이를 미국(미시간대학교 외)에서 측정한 고해상도 실험결과와 비교검증을 수행하고자 한다. 본 연구는 다음과 같이 5개의 역무로 나누어 수행된다. (1) 공기/증기유입 종합효과 실험 (미국) ▪ HTGR 공기/증기유입 현상에 대한 종합효과 실험을 통하여 사고 시 유량, 온도, 농도 등의 거시적 파라미터의 시간에 따른 영향을 측정. (2) 유동상실사고 개별효과 실험 (미국) ▪ HTGR 유동상실사고시 국부 유동혼합현상에 대한 개별효과 실험을 통하여 고해상도 속도분포 및 농도분포를 측정. (3) HTGR 해석을 위한 SPH 모델 개발 (한국) ▪ HTGR 사고현상 해석을 위한 SPH 상태방정식, 확산모델, 화학반응모델 등을 개발하고 구현 및 실증. (4) 통합 SOPHIA 코드체계 구현 (한국) ▪ 개발된 모델을 코드 내로 통합하고, 계산성능 및 사용자 환경 개선. (5) 코드 검증 (미국/한국) ▪ 코드해석과 실험결과의 비교를 통하여 코드 검증. □ 활용계획 및 기대효과 (응용분야 및 활용범위 포함) (1) 전산해석코드의 활용방안: ▪ 고온가스로 사고해석 및 현상 분석에 활용. ▪ 지속적인 연구개발을 통해 다양한 분야에 활용범위 확대. (2) 고정밀 실험결과 활용방안: ▪ 다른 코드/방법론 검증 또는 물리모델 개발을 위한 기초데이터로 지속적인 활용. (3) 기대효과: ▪ 안전해석 기술 향상, 전통적인 안전해석 기술 보완, 현상에 대한 깊은 통찰력, 원자로 안전성 향상, 해석 코드의 상용화, 관련분야의 국가적 리더쉽 확보 및 전문 인력양성 등의 기술적, 경제적 효과 기대. (출처 : 요약문 2p)
- 연구책임자 : 김응수
- 주관연구기관 : 서울대학교
- 발행년도 : 20211200
- Keyword : 1. 고온가스냉각로;공기유입;증기유입;완화입자유체동역학;라그랑지안;전산유체역학;다물리;고해상도; 2. HTGR;Air Ingress;Steam Ingress;SPH;Lagrangian;CFD;Multi-physics;High-Resolution;