□ 연구개요 자율주행차의 복잡성 증가로 인해 결함 발생 가능성이 높아지고 있으며, 통신 네트워크가 개방된 아키텍쳐로 전환됨에 따라, 악의적인 공격에 노출될 가능성 또한 증가하고 있음. 자율주행차의 고가용성이란 차량의 자체 결함이나 외부 공격이 발생하더라도 시스템의 성능을 지속적으로 유지시킴으로써 사고로부터 인명의 손실을 막기 위한 자율주행차의 필수 요건임. 이에, 본 연구에서는, 시스템의 중복 탑재를 통해 고가용성을 확보할 수 있는 중복성 시스템온칩 (SoC) 아키텍쳐 및 CAN-HSR 기반 고가용성 차량용 네트워크 아키텍쳐를 설계하고 구현하고자 함. □ 연구 목표대비 연구결과 ● 정량적 연구결과: 본 과제 사사로 총 4편의 SCI 저널 논문을 출판하여 매년 평균 1.33편의 SCI 논문을 출판하였음. 또한, 총 7편의 특허를 출원 하여, 매년 평균 2.3편의 특허를 출원하였고, 이외 2편의 국제학회 논문과 2편의 국내학회 논문을 발표함. 본 과제의 정량적 목표를 초과 달성함. ● TMR 구조에 근거한 RISC-V 기반 하드웨어 중복성 아키텍쳐의 새로운 구조를 제안함. 특히, industrial CAN에 대해 partial redundancy 방법을 적용한 새로운 구조에 대해 연구를 수행함. 그 결과로서, 프로세서 처리 속도는 네트워크의 지연시간 보다 훨씬 빠르며, 차량의 2ms 이내 지연시간을 만족시킴. ● 차세대 In-Vehicle Network 전환 기간동환 HSR의 이중화 메커니즘을 CAN에 적용하는 Seamless CAN이라는 새로운 내결함성 알고리즘을 연구하였으며, 기존의 CAN 기반의 네트워크에 비해 10배 낮은 BER performance를 획득함. ● 하드웨어 중복성에 활용 가능한 딥러닝 알고리즘의 고속 하드웨어 구조를 제안함. 결과물로 합성가능한 Verilog-HDL 소스 코드를 얻음. ● 새로운 Fault-Tolerant 알고리즘에 대한 분석적 연구와 이것에 기반한 네트워크 시뮬레이션 모델을 통해 기존 연구에 비해 향상된 결과를 얻을 수 있었으며 이를 증명하기 위한 OMNET++ 소스 코드를 얻음. ● 현재 상용화되고 있는 이중화 기술 현황 분석을 통해, 실제 환경과 유사한 파라미터를 이용하여 시뮬레이션을 실시하고 결과를 얻을 수 있었음. □ 연구개발성과의 활용 계획 및 기대효과(연구개발결과의 중요성) ● 본 과제를 통해 개발된 중복성 시스템은 고장 발생으로 인해 인명이나 재산에 피해를 초래하는 안전-필수(safety-critical) 시스템에 사용 가능함. ● 특히, 차량용 반도체 뿐 아니라, 우주/항공 분야의 내방사선(Radiation-Resistant) 프로세서, 원자력발전의 디지털 원자로 (Reactor) 보호시스템, 군사 응용, 무인 차량 및 산업/의료 장비 등 방사선 및 고장 등 고가용성 유지가 필수적인 분야에 제안하는 내결함성 프로세서가 활용될 수 있음. ● 자율주행차의 인지, 처리, 판단을 위한 신호처리 알고리즘, 구현 IP, 칩셋, 구동 SW 환경을 위시한 시스템온칩 플랫폼이 국산 자율주행차의 제어 플랫폼으로 활용 가능하며, 향후 Level-5를 위한 궁극의 중복성 기술에 활용 가능할 것으로 기대함. (출처 : 연구결과 요약문 2p)
- 연구책임자 : 박상윤
- 주관연구기관 : 명지대학교
- 발행년도 : 20240300
- Keyword : 1. 자율주행차;고가용성;중복성;시스템온칩;차량내부 네트워크; 2. Autonomous Vehicle;High-Availability;Redundancy;System-on-Chip;In-Vehicle Network;