□ 연구개요 We conducted research on the characteristics of quarkonium states in a non-equilibrium Quark-Gluon Plasma (QGP) medium. Our study focused on examining the impact of bulk viscosity, magnetic field, and rotational field on the properties of heavy quarkonia. We also analyzed the implications of our findings on experimental observables such as the relative production yield and the nuclear modification factor. Additionally, we investigated how a constant and uniform magnetic field of general strength, generated during heavy-ion collision, affects the heavy quarkonium complex potential. To achieve this, we employed the Schwinger proper time formalism in Euclidean space for a magnetic field of any strength. □ 연구 목표대비 연구결과 In our study, we investigate the properties of quarkonium states in a non-equilibrium bulk viscous QGP medium. We examine in-medium spectral functions computed from a modified heavy quark potential to determine the impact of non-equilibrium aspects of a QGP on heavy quarkonia properties. Our analysis focuses on the effect of bulk viscosity on the properties of heavy quarkonia, particularly its implications on experimental observables such as the relative production yield and the nuclear modification factor. Our findings show that the nuclear modification factors of excited and ground states exhibit different sensitivities to the bulk viscous nature of a plasma, which could be useful in locating the critical point. Additionally, we investigate the impact of an external, constant, and uniform magnetic field generated during heavy-ion collision on the heavy quarkonium complex potential. We employ the lowest Landau level approximation for the strong field approximation and the Schwinger proper time formalism in Euclidean space for a magnetic field of any strength. Our results demonstrate that the heavy quarkonium complex potential is anisotropic in nature and depends on the angle between the quark-antiquark (QQ) dipole axis and the direction of the magnetic field. We discuss how the magnetic field strength and the angular orientation of the dipole affect the heavy quarkonium potential. Furthermore, we examine how the magnetic field influences the thermal widths of quarkonium states. Finally, we discuss the limitation of the strong-field approximation as done in literature in the light of heavy-ion observables, as the effect of the magnetic field is very nominal to the quarkonium potential. □ 연구개발성과의 활용 계획 및 기대효과(연구개발결과의 중요성) QGP-related research is a type of fundamental research in high-energy nuclear physics. The purpose of this research is to expand our understanding of the basic building blocks of all matter. Basic science studies play a vital role in arousing young children's interest in science and technology, even though the impact of this interest is challenging to measure. We study the in-medium properties of quarkonium states from an inspection of in-medium spectral functions computed from the modified heavy quark potential in a non-equilibrium bulk viscous QGP medium. It is important to study the quarkonium spectral functions to understand the effect of color screening, encoded in real part of potential, as well as the effects of dissipation, encoded in the imaginary part of the potential. We examine the effect of bulk viscosity on the properties of heavy quarkonia and its implications on experimental observables. We also explore how an external, constant, and uniform magnetic field generated during heavy-ion collision affects the heavy quarkonium complex potential. Our results will enhance our knowledge of the early universe and have broader implications for related scientific disciplines. (source : 연구결과 요약문 2p)
- 연구책임자 : THAKUR LATA
- 주관연구기관 : 연세대학교
- 발행년도 : 20240300
- Keyword : 1. 쿼크 글루온 플스마 헤;헤비 쿼르코니아;양자 색역학;중이온충돌;퍼텐셜 모델; 2. Quark Gluon Plasma;Heavy Quarkonia;Quantum Chromodynamics;Heavy ion collision;Potential Model;