All 3,257,835 Page 99/325,784
-
2025
In this contribution, we report the measurement of D0 meson tagged jets in Au+Au collisions at √sNN = 200 GeV by the STAR experiment at RHIC. We present the nuclear modification factor RCP as a function of the jet transverse momentum and transverse momentum fraction of the jet, carried by D0 meson along the jet axis zJet, and the radial profile of the D0 meson. These results are compared to theoretical predictions provided by a hybrid transport model. Additionally, we show the raw measurement of several generalized angularities λκα, which describe the jet substructure. These results may help distinguish between different models describing jet quenching and heavy flavor quark in-medium energy loss.- Book : 316()
- Pub. Date : 2025
- Page : pp.04013-04013
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : 1011()
- Pub. Date : 2025
- Page : pp.116807-116807
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
Abstract. The west coast of southern Africa is a region of particular climate interest and a crossroad for aerosols of different origins as well as fog occurrences. In this study, we present a comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AErosols, Radiation and CLOuds in southern Africa (AEROCLO-sA) field campaign in September 2017. From inductively coupled plasma mass spectrometry measurements, we found that Al, Fe, Ni, Cu, and Cr have enhanced solubility in fog samples compared to the TSP samples. We found that thermodynamic modelling predicts the formation of soluble complexes with inorganic and organic ligands in fog for Cu, Cr, and Ni, but it would predict Al and Fe to precipitate as hydroxides given the neutral pH of fog. Contrastingly, X-ray absorption near edge structure measurements showed the presence of oxalate of Fe complexes that could explain its enhanced solubility in fog samples, despite a neutral pH. In addition, transmission electron microscopy and dynamic light scattering measurements revealed the presence of nano-sized colloidal particles containing Fe and Al in filtered fog samples that may appear as soluble in ICP-MS measurements. We hypothesise that those complexes are formed in the early stages of particle activation into droplets when water content and, therefore, pH are expected to be lower and then remain in fog in a kinetically stable form or lead to the formation of colloidal particles.
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :