본문 바로가기

Report

All 3,276,413 Page 74/327,642

검색
  • 2025

    AbstractThe current understanding of crew health maintenance is founded upon decades of physiological research conducted in terrestrial spaceflight analogues and in low Earth orbit, particularly on the International Space Station. However, as we progress towards the Lunar Gateway and interplanetary missions, it is imperative that the tools employed to maintain crew health are redefined, including the utilisation of exercise countermeasures. The successful implementation of exercise countermeasures for deep space missions must address a number of challenges, including those posed by new environments with elevated levels of cosmic radiation and solar particle events, extended mission durations and constrained space availability. In this Topical Review, the authors address points that are important (and sometimes critical), but often ignored, in order to define future exercise countermeasures for long‐duration space missions. Multi‐organ countermeasures, countermeasure enjoyment, time‐dependent load variability, the relationship between nutrition and the success of exercise countermeasures, and the individual variability in response to a given countermeasure are presented and discussed. The aim of this article is to raise awareness of important aspects that can profoundly influence the efficacy of exercise countermeasures, thereby affecting the health of the crew and the success of the mission during prolonged spaceflight.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    This study analyzes the technology for creating polymer composite materials reinforced with glass fiber. Particular attention is given to their applications in the aerospace industry, where stringent requirements for strength, corrosion resistance, and specific strength render these materials indispensable. The main components of composite materials and their properties are examined. Phenol-formaldehyde resins, widely utilized as a matrix for fiberglass plastics in rocket and space engineering, are studied in detail. The thermomechanical resistance of composites, a critical factor determining their performance under extreme conditions, is highlighted. A significant part of the study focuses on the production and curing processes of composite materials. Various curing methods are analyzed, with a focus on the effectiveness of infrared radiation. The findings establish that infrared heating significantly enhances the physical and mechanical properties of composites while reducing production time.
    • Book : (1)
    • Pub. Date : 2025
    • Page : pp.94-102
    • Keyword :
  • 2025

    ABSTRACTRegulation of protein synthesis is central to maintaining skeletal muscle integrity and its understanding is important for the treatment of muscular and neuromuscular pathologies. The eIF3f subunit of the translation initiation factor eIF3 has a key role, as it stands at the crossroad between protein-synthesis-associated hypertrophy and MAFbx/atrogin-1-dependent. To decipher the molecular mechanisms underpinning the role of eIF3f in regulating muscle mass, we established a cellular model that enables interrogation of eIF3f functionality via identification of proximal interactors. Using CRISPR-Cas9 molecular scissors, we generated single cell clones of immortalised human muscle cells expressing eIF3f fused to the BirA biotin ligase (eIF3f-BioID1 chimera) from the endogenousEIF3Flocus. Biotinylated proteins, representing interactors of eIF3f in nanometer range distance, were identified by streptavidin pull-downs and mass spectrometry. In both proliferating and differentiated muscle cells, the eIF3f-BioID1 chimera co-sedimented with ribosomal complexes in polysome profiles and interacted mainly with components of the eIF3 complex, and with the eIF4E, eIF4G, and eIF5 initiation factors. Surprisingly, we identified several nucleus-localised interactors of eIF3f, and the immunofluorescence analyses revealed a previously unknown nuclear localization of eIF3f in both myoblasts and myotubes. We also identified novel cytoplasmic partners of eIF3f, responsible for the maintenance of skeletal muscle ultrastructure (sarcomeric/Z-disc (SYNPO2) bound proteins) and proteins of the lysosomal compartment (LAMP1). The established tagging system should be useful to further advance studies of eIF3f function in hypertrophic and atrophic conditions in skeletal muscle.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Background: According to the 8th edition of the American Joint Committee on Cancer (AJCC), involvement of the masticator space and infratemporal fossa (ITF) in oral cancers indicates advanced disease (T4b), which is often considered unresectable. Previous studies have shown that the extent of ITF involvement influences management and outcomes. Therefore, to optimize management, T4b disease should be subclassified based on ITF involvement. Notably, infranotch disease has a more favorable prognosis compared to supranotch disease. Our study also observed that certain subsets of high anterior retroantral ITF involvement may be operable with favorable clinical outcomes. This study aims to derive a new image-based compartmentalization of high ITF involvement and assess its impact on the management and outcomes of oral head and neck squamous cell carcinoma (HNSCC) patients with high ITF involvement. Materials and Methods: This retrospective observational study included 154 non-metastatic, upfront unresectable locally advanced HNSCC patients who were fit for induction neoadjuvant chemotherapy (NACT). ITF involvement was classified into distinct compartments, and detailed staging of the primary tumor (T) and regional nodes (Ns) was performed. Clinical data, including patient demographics, treatment received, and follow-up notes, were documented. Prognosis was assessed using survival metrics: event-free survival (EFS), progression-free survival (PFS), and overall survival (OS). The ITF was categorized into the following compartments: compartment 1 (low ITF: medial pterygoid), compartment 2 (anterior high ITF: retroantral fat), compartment 3 (posterior high ITF), including 3a (paramandibular compartment: paramandibular fat/temporalis), 3b (muscle compartment: lateral pterygoid), and 3c (Perineural compartment: pterygopalatine fossa and pterygomaxillary fissure). Results: Of the 154 cases, 142 (92%) were classified as T4b, with 63 (40.9%) having high ITF involvement and 79 (55.6%) having low ITF involvement. Twelve cases had T4a disease, which was deemed unresectable due to extensive nodal involvement. Subcompartmentalization of the 63 high ITF cases revealed 26 (41.2%) with compartment 2 involvement, 17 (26.9%) with compartment 3a involvement, 11 (17.4%) with compartment 3b involvement, and 9 (14%) with compartment 3c involvement. Disease progression following NACT was significantly higher in compartment 3c, which showed a poor response (p = 0.007). Univariate analysis for PFS revealed similar outcomes for compartments 1 and 2 (p = 0.692), while compartment 3 demonstrated poorer outcomes (p = 0.033). Among thosehigh ITF involvement, compartment 3c had the worst PFS outcome (p = 0.03). Conclusions: Baseline imaging plays a critical role in guiding individualized treatment and predicting clinical outcomes. Low ITF involvement and disease limited to the high retroantral fat compartment exhibit similar clinical outcomes. Among the posterior high ITF compartments, involvement of the pterygopalatine fossa and pterygomaxillary fissure (compartment 3c) is associated with the worst prognosis and poor response to chemotherapy. Subcompartmentalization of ITF involvement provides valuable prognostic information to tailor treatment strategies.
    • Book : 32(2)
    • Pub. Date : 2025
    • Page : pp.99-99
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Abstract Accurate characterization of space radiation exposure is critical to assess and communicate multiple health risks for crewmembers participating in future exploration missions. A combination of models and on-board instruments are utilized to meet this requirement. In this work, computational models are evaluated against spaceflight measurements taken within the International Space Station, the Orion spacecraft, the BioSentinel CubeSat, and on the Martian surface. All calculations and measurements cover the exact same time period defined by the Artemis-I mission, and all model calculations were performed blind—without prior knowledge of the measurements. The models are shown to accurately characterize the absorbed dose-rate in highly complex and diverse shielding configurations in locations from Earth to Mars.
    • Book : 11(1)
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : 111(4)
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes radiation distortion and cross-polarization while introducing orthogonal phase shifts to achieve circular polarization (CP) at the X-band. A Fabry–Pérot structure, strategically placed above the array, enhances gain in the WLAN band. The antenna demonstrates an impedance bandwidth of 1.8 GHz (S11 < −10 dB) at the WLAN band, with 36% fractional bandwidth, and 4.3 GHz at the X-band, with 43% fractional bandwidth. Measured peak gains are 7 dBi for the WLAN band and 6.8 dBi for the X-band, with favourable S11 levels, omni-directional radiation patterns, and consistent gain across both bands. Circular polarization is achieved within 8.5–10.4 GHz. Experimental results confirm the array’s significant advancements in multi-band performance, making it highly suitable for diverse wireless communication applications.
    • Book : 16(2)
    • Pub. Date : 2025
    • Page : pp.203-203
    • Keyword :
  • 2025

    The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, “Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health”, highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
    • Book : 14(2)
    • Pub. Date : 2025
    • Page : pp.203-203
    • Keyword :
  • 2025

    Aim and backgroundDue to the radiosensitivity and deep anatomical location of nasopharyngeal carcinoma (NPC), radiotherapy serves as the cornerstone of standardized treatment for this malignancy. Beyond its cytotoxic effects, radiotherapy can serve as an immunological adjuvant by inducing immunogenic cell death (ICD). Dendritic cells (DCs), as potent antigen-presenting cells, play a critical role in tumor immunotherapy, but their exact role in the ICD process of NPC remains unclear. The effects of high-dose radiation (≥2 Gy) on DCs and the type of immune response it elicits in NPC have not been fully elucidated.MethodsAn in vitro study was conducted to assess whether ICD of NPC 5-8F cells induced by high-dose radiation could regulate the immune response of DCs. Specifically, the maturation and antigen-presenting capacity of DCs were evaluated following co-culture with NPC cells exposed to high-dose radiation.ResultsHigh-dose radiation was found to induce ICD in NPC 5-8F cells, as evidenced by increased pro-inflammatory factor levels and reduced anti-inflammatory factor levels in the cell culture supernatant. Co-culture with NPC cells exposed to high-dose radiation for 15 minutes significantly enhanced the expression of surface molecules on DCs, promoting their immune sensitization.ConclusionHigh-dose radiation-induced apoptosis of NPC 5-8F cells is a form of ICD, which plays an important role in regulating DC immune function. These findings provide insight into the immunomodulatory effects of radiotherapy in NPC and its potential to enhance tumor immunotherapy through DC activation.
    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :