본문 바로가기

Report

All 3,245,484 Page 32/324,549

검색
  • 2025

    Abstract

    The need for the replacement of cadmium, indium, and tellurium in their compounds for sensor applications is a novel study. The copper zinc tin sulfide (Cu2ZnSnS4) thin films were synthesized from Cu (99.99%), Sn (99.99%), and Zn (99.99%) using the thermal evaporation method. The same volumetric parameters were maintained throughout the synthesis process. The films were further irradiated using an isotope of cesium-137 (Cs-137) from a gamma source at different doses (0-0.6 kGy) and dose rates of 0.1007 Gy/h at room temperature. Both the pristine (0 kGy) and irradiated (0.1, 0.3, and 0.6 kGy) films were characterized with a Raman spectroscope, a field emission scanning electron microscope (FESEM) with the JEOL JSM-7600F model, energy dispersive X-rays (EDX), an ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscope, and four-point probe techniques. The Raman results confirmed that all the films for both pristine and irradiated films have a main and secondary phases. The EDX results showed that the pristine and 0.1 kGy films were Cu-rich films, while the 0.3 kGy and 0.6 kGy films turned out to be Zn-rich films with an increase in gamma radiation dose. The optical properties of all the films showed also that the band gap decreased from 1.6 to 1.48±0.03 eV for the pristine and irradiated films, while the electrical resistivity results decreased as the gamma radiation dose increased. However, as the structural, optical, and electrical properties of the Cu2ZnSnS4 thin films responded linearly with the increasing gamma radiation dose, this suggests the usefulness and possibility of designing a new solid-state sensor for dosimetry applications to replace cadmium telluride (CdTe) and copper indium gallium sulfide (CIGS) thin films.


    • Book : 11(2)
    • Pub. Date : 2025
    • Page : pp.022002
    • Keyword :
  • 2025

    Abstract

    In indirect-drive inertial confinement fusion (ICF) research, the meticulous design and optimization of laser parameters are crucial for achieving high-gain ignition. The intensity of the toe laser, used for ablating the hohlraum sealing membrane, is a subtle but equally critical parameter. This study introduces a novel experimental approach using the Velocity Interferometer System for Any Reflector (VISAR) to assess the impact of toe laser intensity on the compression of fusion capsules. By tracking the reflectivity of tracer layers and shock velocities in liquid deuterium, the adverse effects of insufficient toe laser intensity on capsule compression have been unveiled for the first time. From a comparison with hydrodynamic simulations, we show that below a critical threshold of 0.23 × 1014 W cm−2, the adiabat, a measure of the fuel’s compression efficiency, increases markedly with the toe laser intensity decreases, whereas it remains stable within the range of (0.23 ∼ 7) × 1014 W cm−2. Our findings provide critical insights on toe laser parameter design, enhancing our understanding of the role of toe laser intensity in ICF experiments. This research not only refines the parameters for laser operation but also underscores the importance of precision in achieving the desired implosion efficiency, contributing to the development of nuclear fusion as a clean energy source.


    • Book : 65(1)
    • Pub. Date : 2025
    • Page : pp.016032
    • Keyword :
  • 2025


    • Book : 10(1)
    • Pub. Date : 2025
    • Page : pp.101664
    • Keyword :
  • 2025


    • Book : 1010()
    • Pub. Date : 2025
    • Page : pp.116751
    • Keyword :
  • 2025


    • Book : 1010()
    • Pub. Date : 2025
    • Page : pp.116753
    • Keyword :
  • 2025


    • Book : 217()
    • Pub. Date : 2025
    • Page : pp.111604
    • Keyword :
  • 2025


    • Book : 212()
    • Pub. Date : 2025
    • Page : pp.111061
    • Keyword :
  • 2025

    Abstract

    As magnetic confinement devices move toward higher fusion powers, moderating the heat load to the plasma-facing components becomes increasingly challenging. Efficient power dissipation can be achieved through control of the plasma radiation. However, defining a reliable proxy for the total radiated power is particularly challenging for non-axisymmetric devices such as stellarators. To address this problem, the radiated power can be estimated through a sum of the individual line-integrated bolometer measurements with weights properly calculated to account for the three-dimensional magnetic geometry. The present contribution aims to apply this weighted sum approach to Wendelstein 7-X (W7-X) and quantitatively validate it. First, we generate synthetic radiated power phantoms with characteristic W7-X radiation features to derive a set of optimized line-of-sight weights. Then, we test the weights on mock-ups and EMC3-EIRENE radiation patterns, including acquisition and analysis errors such as random noise fluctuations, camera misalignments, and field errors. Compared to other methods, the optimized weighted sum technique exhibited the best performance in all the presented synthetic test cases. When applied to experimental bolometer data, the optimized weights provided a proxy that is both reliable and real-time capable. Further validation is foreseen for the next experimental campaign.


    • Book : 65(1)
    • Pub. Date : 2025
    • Page : pp.016035
    • Keyword :
  • 2025

    JOURNAL/nrgr/04.03/01300535-202509000-00029/figure1/v/2024-11-05T132919Z/r/image-tiff

    Protein arginine methyltransferase-6 participates in a range of biological functions, particularly RNA processing, transcription, chromatin remodeling, and endosomal trafficking. However, it remains unclear whether protein arginine methyltransferase-6 modifies neuropathic pain and, if so, what the mechanisms of this effect. In this study, protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model, chronic constriction injury model and bone cancer pain model, using immunohistochemistry, western blotting, immunoprecipitation, and label-free proteomic analysis. The results showed that protein arginine methyltransferase-6 mostly co-localized with β-tubulin III in the dorsal root ganglion, and that its expression decreased following spared nerve injury, chronic constriction injury and bone cancer pain. In addition, PRMT6 knockout (Prmt6-/-) mice exhibited pain hypersensitivity. Furthermore, the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression. Moreover, when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury, increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn, and the response to mechanical stimuli was enhanced. Mechanistically, protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F. Additionally, protein arginine methyltransferase-6-mediated modulation of heterogeneous nuclear ribonucleoprotein-F expression required amino acids 319 to 388, but not classical H3R2 methylation. These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target for the treatment of peripheral neuropathic pain.


    • Book : 20(9)
    • Pub. Date : 2025
    • Page : pp.2682-2696
    • Keyword :
  • 2025


    • Book : 1054()
    • Pub. Date : 2025
    • Page : pp.122979
    • Keyword :